Outline

- Image Representation and Description
- Boundary representations: Chain codes, polygonal approximations, signatures, and skeletons
- Boundary descriptors: Basic descriptors, Fourier descriptors, statistical moments

Boundary Representations: Chain Codes

- We can describe a boundary by starting from a point and forming a vector with directions for each pixel using 4 or 8 connectivity
- The disadvantages of this direct implementation is that, the chain can be very long and not robust to noise
- Therefore, we usually use larger grids then pixels
- In this way, both robustness is increased amd the chain is shorter

Boundary Representations: Chain Codes (Cont.)

Illustration of a chain code

Boundary Representations: Polygonal Approximations

- The goal is to find polygons that approximates the shape of the boundary
- Large number of polygons have a more accurate representation but it is time consuming to find these
- Small number of polygons catch only the basic information of the boundary (less accurate), but it is easier to find these
- Now let us have a look at a few methods to find these polygons

Boundary Representations: Polygonal Approximations Minimum perimeter polygons

- In this case we force the boundary to have the minimum length by keeping it in the same pixel

Illustration of a minimum parameter polygon

Boundary Representations: Polygonal Approximations Merging and Splitting

- Merging: We go through each of the boundary pixels, and merge them as long as the error between the representation and the real boundary is less than a threshold
- Splitting: We split the original boundary into two parts until a certain criterion is satisfied, such as the distance between the representation segment and the original boundary being less than a certain value

Illustration of splitting

Boundary Representations: Signatures

- Signatures are 1-D representations of 2-D boundaries
- One straightforward way to obtain is to form a 1-D function which corresponds to the distance of the boundary pixel to its centroid

Illustration of signature

Boundary Representations: Signatures (Cont.)

- Signatures obtained in this way are variant to rotation and scaling
- We can however obtain the same signature regardless of the orientation of the shape if we start from a point which is unique in the boundary (such as its distance from the center)
- Scaling basically just changes the amplitude of the shape, so we can obtain same signature by mapping the amplitude range of the signature to a fixed interval

Boundary Representations: Skeletons

- We can form a skeleton as described earlier, however skeletons are not guaranteed to be connected
- We define another form of skeleton called the medial axis transformation (MAT) of a region
- MAT of a region R with border B is formed by all points in R that has more than one closes point on B

Illustration of MAT

Boundary Descriptors: Basic Descriptors

- Length: we can calculate the length of a boundary by adding number of pixels with the horizontal and vertical directions and sqrt2 times the diagonal directions
- Diameter: the diameter of a boundar is defined as the maximum of the distance between all points on boundary

$$
\operatorname{Diam}[B]=\max _{i, j}\left[D\left(p_{i}, p_{j}\right)\right]
$$

- Major and minor axis: Major axis is the line that connects the diameter points, and minor axis is the axis perpendicular to the major axis
- Eccentricity: ratio of the length of major and minor axes
- Curvature: rate of change of slope

Boundary Descriptors: Shape Numbers

- Chain code representations depend on the starting pixel
- We can remove this problem if we choose the pixel that results in a chain code that is minimum when viewed as an integer number
- Difference of a chain code is defined as simply the difference between the successive chain code elements in a circular fashion and in mod 4 or mod 8 depending on the connectivity used
- Shape number is the shifted version of the difference code so that it has the smallest value possible when viewed as an integer

Boundary Descriptors: Shape Numbers (Cont.)

Illustration of shape numbers

Boundary Descriptors: Fourier Descriptors

- Now consider the pairs (x and y coordinates) of points that form a boundary
- Let us define a complex number $s(k)$

$$
s(k)=x(k)+j y(k)
$$

- The Fourier transform of this series is called the Fourier descriptor of the boundary

$$
a(u)=\frac{1}{K} \sum_{k=0}^{K-1} s(k) e^{-j 2 \pi u k / K}
$$

- The boundary can be obtained from its Fourier descriptor as follows

$$
s(k)=\sum_{u=0}^{K-1} a(u) e^{j 2 \pi u k / K}
$$

Boundary Descriptors: Fourier Descriptors (Cont.)

- If we truncate the summation, we just keep the low pass components of the boundary resulting in a more smooth boundary

$$
s^{\prime}(k)=\sum_{u=0}^{P-1} a(u) e^{j 2 \pi u k / K}
$$

where $P<K$

Illustration of truncation

Boundary Descriptors: Fourier Descriptors (Cont.)

- Although Fourier descriptors are not invariant to certain changes in the boundary such as scaling rotation etc, these operations have simple corresponding changes in its Fourier descriptor

Transformation	Boundary	Fourier Descriptor
Identity	$s(k)$	$a(u)$
Rotation	$s_{r}(k)=s(k) e^{j \theta}$	$a_{r}(u)=a(u) e^{j \theta}$
Translation	$s_{t}(k)=s(k)+\Delta_{\mathrm{xy}}$	$a_{t}(u)=a(u)+\Delta_{x y} \delta(u)$
Scaling	$s_{s}(k)=\alpha s(k)$	$a_{s}(u)=\alpha a(u)$
Starting point	$s_{p}(k)=s\left(k-k_{0}\right)$	$a_{p}(u)=a(u) e^{-j 2 \pi k_{0} u / K}$

Illustration of shape numbers

Boundary Descriptors: Statistical Moments

- After obtaining a 1-D representation of a boundary, we can treat this $1-\mathrm{D}$ function as a PDF, and calculate the moments
- These moments can be used as the descriptors
- Let $g(r)$ represent the 1-D function, and $p\left(v_{i}\right)$ the PDF of its amplitude
- The mean is then

$$
m(v)=\sum_{i=0}^{A-1}\left(v_{i}\right) p\left(v_{i}\right)
$$

- The more general nth order moment about its mean is defined as

$$
\mu_{n}(v)=\sum_{i=0}^{A-1}\left(v_{i}-m\right)^{n} p\left(v_{i}\right)
$$

