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Representation and Description: Basic Regional
Descriptors

• Area: defined as the number of pixels in a region

• Perimeter: the length of the region’s boundary

• These two are size dependent

• Compactness: perimeter2/area
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Representation and Descriptiton: Topological Region
Desriptors

• Topology studies the properties that do not change with rubber-type
distortions of a shape

• E.g. a cylindir and a sphere has the same topological properties

• Topological properties that can be used are: number of holes in a
connected region, number of connected regions, or a combination of the
the Euler number, defined as the distance between the number of
connected regions and number of holes

• In case of the special polygon networks, the Euler number can be found
by the following formula

E = V − Q + F

where V is the number of vertices, Q the number of edges, F the number
of faces (non-hole connected subregions)
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Representation and Descriptiton: Topological Region
Desriptors - Example

Left: Euler number is 0, right: Euler number is -1
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Representation and Descriptiton: Region Desriptors
Based on Texture

• What is a texture: there is no really a definition, you can think of it as a
region with similar spatial (sometimes repeating) properties

• We can use texture to describe images in two ways

– Statistical approaches

– Structural approaches

– Spectral approaches
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Region Descriptors Based on Texture: Statistical
Approaches

• We can use statistical moments to describe textures, remember the
definition of moments:

µn(z) =
L−1∑
i=0

(zi − m)np(zi)

where m is the mean and p(zi) is the probability of a pixel having the
gray value zi

• Second order moment is the variance which has information on contrast

• The third moment is a measure of the skewness of the histogram

• The fourth order moment is a measure of flatness
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Region Descriptors Based on Texture: Statistical
Approaches

• We can have statistical texture descriptors other than moments

• Uniformity: This is a measure of the uniformity of a texture

U =
L−1∑
i=0

p2(zi)

• Average entropy: This is a measure of variability, high values for images
uniform histogram, 0 for constant images

e = −
L−1∑
i=0

p(zi)log2[p(zi)]
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Region Descriptors Based on Textures: Histogram and
Spatial Information Hybrid Representations

• The moments is based on the histogram and loses all spatial information

• We can create representations that use histogram information, but also
keeps some of the spatial information

• Assume that we have an image with gray levels z1, . . . , zn, and define a
position operator such as “one pixel below and one pixel right”

• Then the hybrid representation would be
a11 . . . a1n

. . . . . . . . .

an1 . . . ann


where aij represents the number of pixels with gray level zi appears on
“one pixel below and one pixel right” to a pixel with gray level zj
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Region Descriptors Based on Textures: Structural
Approaches

• The idea behind structural approaches is that, more complicated patters
can be created using simpler patterns

• Assume a represents putting a circle to the right, b to down, “c” to up,
then the series “bbbaccabb” represents a 3x3 circle block



'

&

$

%

Region Descriptors Based on Textures: Spectral
Approaches

• Since textures are periodic structures, they form dominant peaks in the
frequency domain

• The direction of dominant structures illustrates the direction of the
structure and the location illustrates the spatial frequency

• We can represent the spectrum in polar coordinates and calculate the
1-D functions

S(r) =
∑π

θ=0 Sθ(r)

S(θ) =
∑R0

r=1 Sr(θ)

• Each of these functions carry information about the direction and shape
of the textures
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Region Descriptors Based on Textures: Spectral
Approaches - Example
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Description Based on Principal Components

• Consider a vector x that has n properties of a pixel

x =



x1

x2

·
·
·

xn


• We now have a vector representing a pixel rather than a scaler (gray

value)

• All quantities such as mean, variance are now generalized to their vector
and matrix counterparts such as mean vector, and the covariance matrix

• The covariance matrix Cx is a very important quantity carrying valuable
information
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Description Based on Principal Components

• Let us perform an eigenvalue decomposition on Cx

• Let ei denote the eigenvectors and λi denote the eigenvalues

• Let us also define A as the matrix with columns that are the eigenvectors

• Hotelling transform is defined as

y = A(x − mx)
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Description Based on Principal Components

• The mean and covariance of this transform can be calculated based on
the mean and covariance of x

my = 0

Cy = ACxAT

• Since A is formed by the eigenvectors of Cx Cy is diagonal:

Cy = diag[λ1, λ2, . . . , λn]
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Description Based on Principal Components

• We can obtain x from y as follows

x = A−1y + mx

• Since A is formed by eigenvectors A−1 = AT

• Instead of using all eigenvectors (components of A), we can truncate and
use the significant ones

x̂ = AT
k y + mx

• The error between this approximation and the original value is given by

e =
n∑

j=k+1

λj

• Error is small when we ignore components only with small eigenvalues
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Description Based on Principal Components

• Then for a feature vector x we can extract the principal components by
eigenvalue decomposition

• The description that we can use will include only a few significant
components with high eigenvalues

• Feature vector x can be obtained from one image o or multiple images of
the same subject
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Description Based on Principal Components - Example

Six images of the same object
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Description Based on Principal Components - Example

Six principal components


