Outline

e Recognition Based on Decision-Theoretic Methods
— Optimum Statistical Classifiers

— Neural Networks




~

Optimum Statistical Classifiers

Previously, we had considered very simple classifiers without using any
high order statistics of the underlying patterns

If we have knowledge about some sort of statistics of the patterns, we
can use information to design a classified that would minimize the

probability of incorrect classifications
Let us define the probability that the pattern & belongs to w; as p(w;/x)
If our classifier incorrectly decides on w;, then we define this error as L;;

Averaging this error for all classes we obtain the average error as

ri(T) = Z Lijp(wi /)
k=1




Optimum Statistical Classifiers

Using the Bayes’ rule we obtain

. W
(—ZLkgPCU/wk P(wy)

We use this average error as our cost function, and choose the class that

results in the minimum error

All r;’s are calculated for j =1,2,..., W and the class with minimum

error 1is selected

Now let us select a value for L;;, a reasonable choice is to make it zero

when ¢ = 7 and one otherwise

Then we have

dj(xz) =rj(x) = p(x/w;)P(w;)

/




Optimum Statistical Classifiers

To be able to calculate this optimum classifier we need to know the
probability of each class (P(w)) and the pdf of the individual patters

must be known

It is a reasonable assumption that we can infer the knowledge of P(w)

based on the problem at hand
However, it is not an easy task to estimate p(x/w;)

Therefore, instead of estimating these directly, we use a parametric

model and estimate a few parameters hence obtain an approximate of

p(x/w;)’s




4 N

Optimum Statistical Classifiers

e Let us use a Gaussian model and assume a scalar x for simplicity. Then

the decision function is

(z—m ;)2
1 - 202”

di(r) = ——e 7 Plwy)

\/ 270

o If we assume that we have only two classes the problem of classifying is

summarized in the following figure

3

Probability density




-~

Optimum Statistical Classifiers

e The 1-D example illustrates the idea, but in reality we will almost

always have multidimensional patterns

e Then the Gaussian will be multivariate

1 —L(@-m,) o (@-m)

S HIeAES

where C’j is the covariance matrix and m; 1S the mean vector

e These quantities can be estimated based on the samples
=y
m, = — x
J Nj

A 1
J




-~

-

~

Optimum Statistical Classifiers

e Now let us minimize d;(x) by minimizing its log (which is a monoton

function)

n 1 1 _
log P(w;) — 5 log(2m) — 5 log |C] — 5 [(@ — m;) C7H (x —my)]

e This expression has a special form when all covariance matrices are

identity and all classes are equally probable

1
T T
di(x) = m; — 5T M
e Remember this! Then the minimum distance classifier is the optimum
bayesian classifier when all pattern classes are Gaussian distributed with

identity covariance matrix and all classes are equally probable

/




Neural Networks: Introduction

e Instead of assuming a parametric model for the pdf’s of patterns, we can

use an approach called “training”

e Known patterns are used first for “training” and learning. In this way,

the decision functions are created based on these known patterns

e This approach brings us to neural networks

- /




-

Pattern

vectors 4

X

Pattern

vectors 4

X

Xy

Xy

Xa

w,

n
d(X) = D Wi + Wyey
i=1

+1
—‘——:-O =
-1

Activation element

Weights

w,

w0 =

-1
Activation element

Neural Networks: A simple two pattern

+1 if d{x) =0

-1 if d(x)<0

n
+1if D wx > —w,
=1

n
-1 i X wx < —w,
=

classes

n+1

ntl

~

example




4 N

Neural Networks: A simple two pattern classes example

e The decision is based on d(x), for positive d(a) the particular class is

selected, for negative d(x) it is not selected

e When d(x) is exactly zero, we can obtain the decision boundary
d(:z:) = W1T1 +W2x2 + ...+ Wpt1

e To be able to reconstruct a decision function we need to calculate the

weights with training algorithms

- /




4 N

Neural Networks: Training Algorithms - Linearly
Separable Classes

e We select an initial coefficient vector w(1) and then using the training
data at each class, update the coeflicient vector as follows

w(k+1) =w(k) +cy(k) when w'(k)y(k) <0,y(k)ew;
w(k+1) =w(k) —cy(k) when w'(k)y(k) > 0,y(k)ews

where c is a positive constant y = [x1, 22, ..., Ty, 1], and

w = [w17w27 I 7wn—|—1]

e This algorithm converges when the two sets are linearly separable

- /




4 N

Neural Networks: Training Algorithms - Nonseparable
classes, Widrow-Hoff Method

e This training method can be used with linearly nonseparable classes

e The algorithm minimizes the error between the desired and actual

I‘eSponse
[r—w'y]?

where r is the desired response, 1 if the training pattern belongs to class
1, and —1 if it belongs to class 2

e This cost function can be minimized using gradiend based numerical

optimization methods

0J(w)

ow ] w=w (k)

w(k+1):w(k)—a[




4 N

Neural Networks: Training Algorithms - Nonseparable
classes, Widrow-Hoftf Method

e Substituting the derivative of the cost function we can obtain
wk+1) =wk) +afr —w'yly

e The only parameter to be selected is a, a reasonable choice is between
0.1 and 1




