
'

&

$

%

Outline

• Recognition Based on Decision-Theoretic Methods

– Optimum Statistical Classifiers

– Neural Networks

'

&

$

%

Optimum Statistical Classifiers

• Previously, we had considered very simple classifiers without using any
high order statistics of the underlying patterns

• If we have knowledge about some sort of statistics of the patterns, we
can use information to design a classified that would minimize the
probability of incorrect classifications

• Let us define the probability that the pattern x belongs to ωi as p(ωi/x)

• If our classifier incorrectly decides on ωj , then we define this error as Lij

• Averaging this error for all classes we obtain the average error as

rj(x) =
W∑

k=1

Lkjp(ωk/x)

'

&

$

%

Optimum Statistical Classifiers

• Using the Bayes’ rule we obtain

rj(x) =
1

p(x)

W∑
k=1

Lkjp(x/ωk)P (ωk)

• We use this average error as our cost function, and choose the class that
results in the minimum error

• All rj ’s are calculated for j = 1, 2, . . . ,W and the class with minimum
error is selected

• Now let us select a value for Lij , a reasonable choice is to make it zero
when i = j and one otherwise

• Then we have
dj(x) = rj(x) = p(x/ωj)P (ωj)

'

&

$

%

Optimum Statistical Classifiers

• To be able to calculate this optimum classifier we need to know the
probability of each class (P (ω)) and the pdf of the individual patters
must be known

• It is a reasonable assumption that we can infer the knowledge of P (ω)
based on the problem at hand

• However, it is not an easy task to estimate p(x/ωj)

• Therefore, instead of estimating these directly, we use a parametric
model and estimate a few parameters hence obtain an approximate of
p(x/ωj)’s

'

&

$

%

Optimum Statistical Classifiers

• Let us use a Gaussian model and assume a scalar x for simplicity. Then
the decision function is

dj(x) =
1√
2πσj

e
−

(x−mj)2

2σ2
j P (ωj)

• If we assume that we have only two classes the problem of classifying is
summarized in the following figure

'

&

$

%

Optimum Statistical Classifiers

• The 1-D example illustrates the idea, but in reality we will almost
always have multidimensional patterns

• Then the Gaussian will be multivariate

p(x/ωj) =
1

(2π)
n
2 |Cj |1/2

e−
1
2 (x−mj)

TC−1
j

(x−mj)

where Cj is the covariance matrix and mj is the mean vector

• These quantities can be estimated based on the samples

m̂j =
1

Nj

∑
x

Ĉj =
1

Nj

∑
xxT − mjm

T
j

'

&

$

%

Optimum Statistical Classifiers

• Now let us minimize dj(x) by minimizing its log (which is a monoton
function)

log P (ωj) −
n

2
log(2π) − 1

2
log |Cj | −

1
2
[(x − mj)TC−1

j (x − mj)]

• This expression has a special form when all covariance matrices are
identity and all classes are equally probable

dj(x) = xTmj −
1
2
mT

j mj

• Remember this! Then the minimum distance classifier is the optimum
bayesian classifier when all pattern classes are Gaussian distributed with
identity covariance matrix and all classes are equally probable

'

&

$

%

Neural Networks: Introduction

• Instead of assuming a parametric model for the pdf’s of patterns, we can
use an approach called “training”

• Known patterns are used first for “training” and learning. In this way,
the decision functions are created based on these known patterns

• This approach brings us to neural networks

'

&

$

%

Neural Networks: A simple two pattern classes example

'

&

$

%

Neural Networks: A simple two pattern classes example

• The decision is based on d(x), for positive d(x) the particular class is
selected, for negative d(x) it is not selected

• When d(x) is exactly zero, we can obtain the decision boundary

d(x) = w1x1 + w2x2 + . . . + wn+1

• To be able to reconstruct a decision function we need to calculate the
weights with training algorithms

'

&

$

%

Neural Networks: Training Algorithms - Linearly
Separable Classes

• We select an initial coefficient vector w(1) and then using the training
data at each class, update the coefficient vector as follows

w(k + 1) = w(k) + cy(k) when wT(k)y(k) < 0,y(k)εω1

w(k + 1) = w(k) − cy(k) when wT(k)y(k) > 0,y(k)εω2

where c is a positive constant y = [x1, x2, . . . , xn, 1], and
w = [w1, w2, . . . , wn+1]

• This algorithm converges when the two sets are linearly separable

'

&

$

%

Neural Networks: Training Algorithms - Nonseparable
classes, Widrow-Hoff Method

• This training method can be used with linearly nonseparable classes

• The algorithm minimizes the error between the desired and actual
response

[r − wTy]2

where r is the desired response, 1 if the training pattern belongs to class
1, and −1 if it belongs to class 2

• This cost function can be minimized using gradiend based numerical
optimization methods

w(k + 1) = w(k) − α

[
∂J(w)

∂w

]
w=w(k)

'

&

$

%

Neural Networks: Training Algorithms - Nonseparable
classes, Widrow-Hoff Method

• Substituting the derivative of the cost function we can obtain

w(k + 1) = w(k) + α[r − wTy]y

• The only parameter to be selected is α, a reasonable choice is between
0.1 and 1

