Outline

- Multi-Dimensional Fourier Transform
- Sampling and Quantization
- Decimation and Interpolation
- Relationships Between Pixels
- Distance Measures
- Linear vs Non-linear Operations
- Image Enhancement in the Spatial Domain
- Gray level transformations
- Histogram processing
- Enhancement with Arithmetic Operations

Multi-dimensional Fourier Transform

- The multi-dimensional Fourier Transform (FT) is a straightforward generalization of the ordinary FT

$$
\begin{aligned}
F\left(u_{1}, u_{2}, \ldots, u_{n}\right)= & \int f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \times \exp \left[-j 2 \pi\left(u_{1} x_{1}+u_{2} x_{2}+\ldots u_{n} x_{n}\right)\right] \\
& \times \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n}
\end{aligned}
$$

- The multi-dimensional inverse FT is

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & \int F\left(u_{1}, u_{2}, \ldots, u_{n}\right) \\
& \times \exp \left[j 2 \pi\left(u_{1} x_{1}+u_{2} x_{2}+\ldots u_{n} x_{n}\right)\right] \\
& \times \mathrm{d} u_{1} \mathrm{~d} u_{2} \ldots \mathrm{~d} u_{n}
\end{aligned}
$$

- The FT gives us the information about the frequency content of the image (as in 1-D FT)

Multi-dimensional Fourier Transform (Cont.)

- The dicrete versions can similarly be obtained

$$
\begin{aligned}
F\left[u_{1}, u_{2}, \ldots, u_{n}\right]= & \frac{1}{M_{1} M_{2} \ldots M_{n}} \sum f\left[x_{1}, x_{2}, \ldots, x_{n}\right] \\
& \times \exp \left[-j 2 \pi\left(u_{1} x_{1} / M_{1}+u_{2} x_{2} / M_{2}+\ldots u_{n} x_{n} / M_{n}\right)\right]
\end{aligned}
$$

- The multi-dimensional inverse FT is

$$
\begin{aligned}
f\left[x_{1}, x_{2}, \ldots, x_{n}\right]= & \sum F\left[u_{1}, u_{2}, \ldots, u_{n}\right] \\
& \times \exp \left[j 2 \pi\left(u_{1} x_{1} / M_{1}+u_{2} x_{2} / M_{2}+\ldots u_{n} x_{n} / M_{n}\right)\right]
\end{aligned}
$$

- The multi-dimensional image can have different pixels along different dimensions
- Fast algorithms (FFT) can be applied to obtain multi-dimensional DFT's

Shifting the FT

- Now let us consider 2-D images of size $M \times N$ with spatial coordinates x, y and frequency variables u, v
- Remember most signals (also images) that we encounter have most of its energy in the low-pass region
- Then the FT will have high values around $(0,0)$, but we would like to see this content in the center area of the spectrum
- We can do that by first multiplying the image by $(-1)^{x+y}$ and then take the FT

Shifting the FT

- We have

$$
\begin{aligned}
F(u, v) & =\frac{1}{M N} \sum \sum f(x, y)(-1)^{x+y} \exp [-j 2 \pi(u x / M+v y / N) \\
& =\sum \sum f(x, y) \exp [j \pi(x+y)] \exp [-j 2 \pi(u x / M+v y / N)] \\
& =\sum \sum f(x, y) \exp [-j 2 \pi((u-M / 2) x / M+(v-N / 2) y / N)]
\end{aligned}
$$

- Then the frequency content will appear at the center of the frequency rectangle
- Just for visualisation purposes, no mathematical difference

Sampling

- Sampling and quantization are two steps required to obtain a digital image
- A two-D continuous image is then transformed into a 2-D matrix after sampling
- Sampling results in

$$
f[x, y]=f\left(x^{\prime}, y^{\prime}\right) g\left(x^{\prime}, y^{\prime}\right)
$$

where $\left(x^{\prime}, y^{\prime}\right)$ are the continuous variables and (x, y) are discrete variables, f the sampled image and g the function representing sampling grid

Sampling (Cont.)

- An example of sampling grid would be a uniform one

$$
g\left(x^{\prime}, y^{\prime}\right)=\left\{\begin{array}{l}
1, x^{\prime}=n N \text { and } y^{\prime}=m N \\
0, \text { otherwise }
\end{array}\right.
$$

with n, m being integers and N sampling periods along two dimensions

- We often use non-uniform sampling in several applications depending on how the image is acquired. One example where non-uniform sampling would be an image where we know certain parts have much more details (requiring denser sampling) and other parts are relatively smooth (requiring more sparse sampling)

Quantization

- Quantization discretizes the amplitude of the samples obtained
- using b bits result in 2^{b} gray levels usually used as $0,1, \ldots, 2^{b}-1$
- Number of bits to be used certainly depends on the application, 8 and 16 are common choices
- Increased number of samples and increased number of gray levels certainly increase the overall quality of the image. However, there is a saturation point beyond which no visible improvement is observed
- The required number of pixels and number of gray levels also depends on the image content
- For an image with high frequency content (a lot of detail) we would require a high number of samples
- For an image with low contrast (closer gray levels) we would require a high number of gray levels (not to loose information)

Decimation and Interpolation

- Let us assume we want to change the size of a digital image
- Increasing the size is called interpolation
- We can overlay the larger grid (the larger image size) on the original image
- Then there will be sampling points that has no available value
- How you select this missing value determines your interpolation method
- Nearest neighbourhood: select the pixel value that is closest
- Bi-linear: choose a value that lies on the line connecting the two closest pixels, usually results in better quality

Relationships Between Pixels

- Neighborhood: we can have different definitions of neighborhood
- 4-neighbors: $(\mathrm{x}+1, \mathrm{y}),(\mathrm{x}, \mathrm{y}+1),(\mathrm{x}-1, \mathrm{y}),(\mathrm{x}, \mathrm{y}-1)$
- 8-neighbors: $(\mathrm{x}+1, \mathrm{y}),(\mathrm{x}, \mathrm{y}+1),(\mathrm{x}-1, \mathrm{y}),(\mathrm{x}, \mathrm{y}-1),(\mathrm{x}+1, \mathrm{y}+1),(\mathrm{x}-1, \mathrm{y}-1)$, $(x-1, y+1),(x+1, y-1)$
- Connectivity: neighborhood + some property (e.g. similar gray level)
- 4-adjacency: Two pixels have similar property and 4 -neighbors
- 8 -adjacency: Two pixels have similar property and 8 -neighbors
- m-adjacency: Two pixels have similar property and either are 4 -neighbors or 8 -neighbors with no common 4 -neighborhood
- A path is a set of consecutive pixels that are adjacent, it is called a closed path if the starting pixel and ending pixel are the same
- A region is a group of pixels that are connected
- A boundary is the group of pixels that are a part of a region but has neighbors that are not a part of the region

Distance Measures

- A function of two pixels is called a distance (or a metric) if
- $D(p, q) \geq 0$, and equal to zero if and only if $p=q$
- $D(p, q)=D(q, p)$
- $D(p, z) \leq D(p, q)+D(q, z)$
- E.g. euclidian distance: $D(p, q)=\left[\left(p_{x}-q_{x}\right)^{2}+\left(p_{y}-q_{y}\right)^{2}\right]^{1 / 2}$

Linear vs. Nonlinear Operations

- An operation is linear if and only if

$$
H(a f(x, y)+b g(x, y))=a H(f(x, y))+b H(g(x, y))
$$

- There are very common non-linear operations in image processing in contrast to signal processing
- E.g. median filtering: the median of the values

$$
\begin{gathered}
\text { Median }\{f=0,1,2\}=1 \quad \text { Median }\{g=3,7,5\}=5 \\
\text { Median }\{f+g=3,8,7\}=7
\end{gathered}
$$

which is not 6

- E.g. max: the maximum value

$$
\begin{gathered}
\operatorname{Max}\{f=0,1,2,3\}=3 \quad \operatorname{Max}\{g=3,2,1,0\}=3 \\
\operatorname{Max}\{f+g=3,3,3,3\}=3
\end{gathered}
$$

which is not 6

Image Enhancement in the Spatial Domain

- Image enhancement is the task of improving the quality of an image for a specific task
- Depending on the application and image content the optimum method varies considerably, no universel "good" image enhancement algorithm
- Quality of image enhancement algorithm is determined by again the specific task
- Measuring the quality of the resulting images is usually a very difficult problem, and results are mostly subjective
- E.g. in photography, the quality of the image produced can be determined by visual evaluation
- E.g. in tumor detection, the quality of the produced image is determined by the increased true detection and decreased fall detection and misses

Image Enhancement in the Spatial Domain: Gray Level Transformations

- Now we consider enhancing an image using operations in the spatial domain

$$
g(x, y)=T[f(x, y)]
$$

where $g(x, y)$ denotes the output (enhanced image), $f(x, y)$ the original image and T the spatial transformation

- Most of the time the transformation is performed using a neighborhood of the pixel, also called masks, filters, windows, templates, kernels
- Now let us have a look at some commonly known gray level transformations

Basic Gray Level Transformations

- Image negatives:

$$
s=L-1-r
$$

where r is the original pixel value s the processed, and $L-1$ is the maximum gray level in the image

- Useful in stressing bright spots in dark backgrounds
- Log transformations:

$$
s=c \log (1+r)
$$

- We have 1 to avoid negative values
- Compresses high values, expands small values, changes dynamic range
- Power transformations

$$
s=c r^{\gamma}
$$

- Compresses small values, expands large values, changed dynamic range

Basic Gray Level Transformations: Thresholding

- Thresholding is basically the task of binarizing the image

$$
r= \begin{cases}0, & s<T \\ 1, & s \geq T\end{cases}
$$

- There are several thresholding algorithms to select the value of T
- The optimum T really depends on the application and image content
- Widely used e.g. in character recognition

Gray level transformations

- Sometimes they are used for improving image visibility, e.g. contrast enhancement
- Sometimes they are necessary for "correction"
- The imaging itself distorts the real object and we undo this effect by using log or power transformations
- E.g. Positron emission tomography, the data is distorted by the decay of radioactive tracer (an exponential), we need to correct this

Piecewise processing

- All these transformations can be performed globally (same transformation for the whole image), or piecewise (varying transformation for different gray levels)

Histogram Processing

- Definition of an histogram:

$$
h\left(r_{k}\right)=n_{k}
$$

where r_{k} is a bin of gray levels (e.g. values between 0 and 10), and n_{k} is the number of pixels with gray level values in that particular bin

- It is related to the probability of occurence of gray levels
- We usually normalize histograms resulting in total area under the histogram curve equal to unity

$$
h\left(r_{k}\right)=n_{k} / N
$$

where N is the total number of pixels

Histogram Processing (Cont.)

- Low contrast images have narrow histograms, and high contrast images have wider histograms
- Human vision favors high contrast images, evaluate them as high quality images
- There are methods to process histograms so that the resulting image has a wide histogram. One such operation is called histogram equalization

Histogram Equalization

- For the development let us consider continuous images with gray values $0 \leq r \leq 1$
- Let T represent the histogram equalizer then
- T must be single valued so that inverse exists
- T must be monotonically increasing so that the order of gray values are preserved
- $T(r)$ must be between 0 and 1 , so that the output gray values are valid

Histogram Equalization (Cont.)

- Let $p_{s}(s)$ denote the PDF of s and $p_{r}(r)$ pdf of r, then we have from probability theory that

$$
p_{s}(s)=p_{r}(r)\left|\frac{\mathrm{d} r}{\mathrm{~d} s}\right|
$$

- Since we want to equalize the histogram we must have $p_{s}(s)=1$ when $s<0<1$
- Then

$$
1=p_{r}(r)\left|\frac{\mathrm{d} r}{\mathrm{~d} s}\right|
$$

- We obtain

$$
\left|\frac{\mathrm{d} r}{\mathrm{~d} s}\right|=p_{r}(r)
$$

Histogram Equalization (Cont.)

- If we use the integral of $p_{r}(r)$ as our transformation

$$
T(r)=\int_{0}^{r} p_{r}\left(r^{\prime}\right) \mathrm{d} r^{\prime}
$$

then we readily have

$$
\frac{\mathrm{d} r}{\mathrm{~d} s}=p_{r}(r)
$$

- Then regardless of the content of an image, if we use a gray level transformation of the form

$$
T(r)=\int_{0}^{r} p_{r}\left(r^{\prime}\right) \mathrm{d} r^{\prime}
$$

the resulting histogram is uniform

Histogram Equalization (Cont.)

- The discrete approximation of the histogram euqlizer is then

$$
T\left(r_{k}\right)=\sum_{j} p_{r}\left(r_{j}\right)
$$

- This transformation does not result in an exactly uniform histogram, but spreads it towards unity

Histogram Matching

- We sometimes prefer a shape other than uniform for the desired histogram
- In this case we specify a desired histogram and develop a method to obtain it
- The development is straightforward in two steps
- Find the histogram euqalizer of the original image, T_{1}
- Find the histogram euqalizer using the desired histogram T_{2}
- Then the transformation $T_{2}^{-1} T_{1}$ will take the original histogram and produce the desired one
- Difficulty arises because in practice it is not easy to obtain analytical forms for these inverses

Histogram Matching: Implementation

- Let us define original gray levels r, the equalized gray level s, the desired gray level z
- We have $s=T_{1}(r)$ and $s=T_{2}(z)$ as well as $z=T_{2}^{-1} T_{1}(r)$
- The difficulty is to computer T_{2}^{-1}
- Therefore instead of computing z using the inverse we perform the following

$$
T_{2}(z)=T_{1}(r)
$$

or

$$
T_{2}(z)-T_{1}(r)=0
$$

- We can search for the vallues of z that minimizes $T_{2}(z)-T_{1}(r)$ since we can calculate T_{1} and T_{2}

Image Enhancement with Arithmetic Operations: Subtraction

- Simply the subtraction of gray level values pixel by pixel
- Useful in identifying the differences in images
- E.g. you developed a compression algorithm, when two images (original and compressed) are put side by side differences may not be noticable
- When you subtract the image, you will see the differences (artifacts) more clearly
- We need to scale appropriately so that the difference image has all valid gray values

Image Enhancement with Arithmetic Operations: Averaging

- Simply averaging of two images pixel by pixel
- Do not confuse by low-pass filtering (averaging of a neighborhood in the same image)
- Useful for example in noise reduction
- You can obtain several images of the same object and averaga them out to reduce noise
- Another application area: evaluate quality of image registration (aligning) algorithms
- When the aligning quality is good the averaged image will preserve edges etc
- When the aligning quality is poor the averaged image will be blurred

Image Enhancement with Arithmetic Operatins: Multiplication

- Image multiplication is mostly used for masking purposes
- Input image is multiplied by a binary image to mask a certain part of the image

