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Outline

• Multi-Dimensional Fourier Transform

• Sampling and Quantization

• Decimation and Interpolation

• Relationships Between Pixels

• Distance Measures

• Linear vs Non-linear Operations

• Image Enhancement in the Spatial Domain

– Gray level transformations

– Histogram processing

– Enhancement with Arithmetic Operations
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Multi-dimensional Fourier Transform

• The multi-dimensional Fourier Transform (FT) is a straightforward
generalization of the ordinary FT

F (u1, u2, . . . , un) =
∫

f(x1, x2, . . . , xn)

× exp[−j2π(u1x1 + u2x2 + . . . unxn)]

×dx1dx2 . . .dxn

• The multi-dimensional inverse FT is

f(x1, x2, . . . , xn) =
∫

F (u1, u2, . . . , un)

× exp[j2π(u1x1 + u2x2 + . . . unxn)]

×du1du2 . . .dun

• The FT gives us the information about the frequency content of the
image (as in 1-D FT)
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Multi-dimensional Fourier Transform (Cont.)

• The dicrete versions can similarly be obtained

F [u1, u2, . . . , un] = 1
M1M2...Mn

∑
f [x1, x2, . . . , xn]

× exp[−j2π(u1x1/M1 + u2x2/M2 + . . . unxn/Mn)]

• The multi-dimensional inverse FT is

f [x1, x2, . . . , xn] =
∑

F [u1, u2, . . . , un]

× exp[j2π(u1x1/M1 + u2x2/M2 + . . . unxn/Mn)]

• The multi-dimensional image can have different pixels along different
dimensions

• Fast algorithms (FFT) can be applied to obtain multi-dimensional DFT’s
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Shifting the FT

• Now let us consider 2-D images of size M ×N with spatial coordinates
x, y and frequency variables u, v

• Remember most signals (also images) that we encounter have most of its
energy in the low-pass region

• Then the FT will have high values around (0,0), but we would like to see
this content in the center area of the spectrum

• We can do that by first multiplying the image by (−1)x+y and then take
the FT
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Shifting the FT

• We have

F (u, v) = 1
MN

∑∑
f(x, y)(−1)x+y exp[−j2π(ux/M + vy/N)

=
∑∑

f(x, y) exp[jπ(x + y)] exp[−j2π(ux/M + vy/N)]

=
∑∑

f(x, y) exp[−j2π((u−M/2)x/M + (v −N/2)y/N)]

• Then the frequency content will appear at the center of the frequency
rectangle

• Just for visualisation purposes, no mathematical difference
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Sampling

• Sampling and quantization are two steps required to obtain a digital
image

• A two-D continuous image is then transformed into a 2-D matrix after
sampling

• Sampling results in
f [x, y] = f(x′, y′)g(x′, y′)

where (x′, y′) are the continuous variables and (x, y) are discrete
variables, f the sampled image and g the function representing sampling
grid
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Sampling (Cont.)

• An example of sampling grid would be a uniform one

g(x′, y′) =

 1, x′ = nN and y′ = mN

0, otherwise

with n, m being integers and N sampling periods along two dimensions

• We often use non-uniform sampling in several applications depending on
how the image is acquired. One example where non-uniform sampling
would be an image where we know certain parts have much more details
(requiring denser sampling) and other parts are relatively smooth
(requiring more sparse sampling)
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Quantization

• Quantization discretizes the amplitude of the samples obtained

• using b bits result in 2b gray levels usually used as 0, 1, . . . , 2b − 1

• Number of bits to be used certainly depends on the application, 8 and 16
are common choices

• Increased number of samples and increased number of gray levels
certainly increase the overall quality of the image. However, there is a
saturation point beyond which no visible improvement is observed

• The required number of pixels and number of gray levels also depends on
the image content

• For an image with high frequency content (a lot of detail) we would
require a high number of samples

• For an image with low contrast (closer gray levels) we would require a
high number of gray levels (not to loose information)
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Decimation and Interpolation

• Let us assume we want to change the size of a digital image

• Increasing the size is called interpolation

• We can overlay the larger grid (the larger image size) on the original
image

• Then there will be sampling points that has no available value

• How you select this missing value determines your interpolation method

• Nearest neighbourhood: select the pixel value that is closest

• Bi-linear: choose a value that lies on the line connecting the two closest
pixels, usually results in better quality
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Relationships Between Pixels

• Neighborhood: we can have different definitions of neighborhood

– 4-neighbors: (x+1,y),(x,y+1),(x-1,y),(x,y-1)

– 8-neighbors: (x+1,y),(x,y+1),(x-1,y),(x,y-1), (x+1,y+1),(x-1,y-1),
(x-1,y+1),(x+1,y-1)

• Connectivity: neighborhood + some property (e.g. similar gray level)

• 4-adjacency: Two pixels have similar property and 4-neighbors

• 8-adjacency: Two pixels have similar property and 8-neighbors

• m-adjacency: Two pixels have similar property and either are
4-neighbors or 8-neighbors with no common 4-neighborhood

• A path is a set of consecutive pixels that are adjacent, it is called a
closed path if the starting pixel and ending pixel are the same

• A region is a group of pixels that are connected

• A boundary is the group of pixels that are a part of a region but has
neighbors that are not a part of the region
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Distance Measures

• A function of two pixels is called a distance (or a metric) if

– D(p, q) ≥ 0, and equal to zero if and only if p = q

– D(p, q) = D(q, p)

– D(p, z) ≤ D(p, q) + D(q, z)

• E.g. euclidian distance: D(p, q) = [(px − qx)2 + (py − qy)2]1/2
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Linear vs. Nonlinear Operations

• An operation is linear if and only if

H(af(x, y) + bg(x, y)) = aH(f(x, y)) + bH(g(x, y))

• There are very common non-linear operations in image processing in
contrast to signal processing

• E.g. median filtering: the median of the values

Median{f = 0, 1, 2} = 1 Median{g = 3, 7, 5} = 5

Median{f + g = 3, 8, 7} = 7

which is not 6

• E.g. max: the maximum value

Max{f = 0, 1, 2, 3} = 3 Max{g = 3, 2, 1, 0} = 3

Max{f + g = 3, 3, 3, 3} = 3

which is not 6
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Image Enhancement in the Spatial Domain

• Image enhancement is the task of improving the quality of an image for
a specific task

• Depending on the application and image content the optimum method
varies considerably, no universel “good” image enhancement algorithm

• Quality of image enhancement algorithm is determined by again the
specific task

• Measuring the quality of the resulting images is usually a very difficult
problem, and results are mostly subjective

• E.g. in photography, the quality of the image produced can be
determined by visual evaluation

• E.g. in tumor detection, the quality of the produced image is determined
by the increased true detection and decreased fall detection and misses
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Image Enhancement in the Spatial Domain: Gray Level
Transformations

• Now we consider enhancing an image using operations in the spatial
domain

g(x, y) = T [f(x, y)]

where g(x, y) denotes the output (enhanced image), f(x, y) the original
image and T the spatial transformation

• Most of the time the transformation is performed using a neighborhood
of the pixel, also called masks, filters, windows, templates, kernels

• Now let us have a look at some commonly known gray level
transformations
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Basic Gray Level Transformations

• Image negatives:
s = L− 1− r

where r is the original pixel value s the processed, and L− 1 is the
maximum gray level in the image

• Useful in stressing bright spots in dark backgrounds

• Log transformations:
s = c log(1 + r)

• We have 1 to avoid negative values

• Compresses high values, expands small values, changes dynamic range

• Power transformations
s = crγ

• Compresses small values, expands large values, changed dynamic range
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Basic Gray Level Transformations: Thresholding

• Thresholding is basically the task of binarizing the image

r =

 0, s < T

1, s ≥ T

• There are several thresholding algorithms to select the value of T

• The optimum T really depends on the application and image content

• Widely used e.g. in character recognition
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Gray level transformations

• Sometimes they are used for improving image visibility, e.g. contrast
enhancement

• Sometimes they are necessary for “correction”

• The imaging itself distorts the real object and we undo this effect by
using log or power transformations

• E.g. Positron emission tomography, the data is distorted by the decay of
radioactive tracer (an exponential), we need to correct this
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Piecewise processing

• All these transformations can be performed globally (same
transformation for the whole image), or piecewise (varying
transformation for different gray levels)
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Histogram Processing

• Definition of an histogram:

h(rk) = nk

where rk is a bin of gray levels (e.g. values between 0 and 10), and nk is
the number of pixels with gray level values in that particular bin

• It is related to the probability of occurence of gray levels

• We usually normalize histograms resulting in total area under the
histogram curve equal to unity

h(rk) = nk/N

where N is the total number of pixels
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Histogram Processing (Cont.)

• Low contrast images have narrow histograms, and high contrast images
have wider histograms

• Human vision favors high contrast images, evaluate them as high quality
images

• There are methods to process histograms so that the resulting image has
a wide histogram. One such operation is called histogram equalization
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Histogram Equalization

• For the development let us consider continuous images with gray values
0 ≤ r ≤ 1

• Let T represent the histogram equalizer then

– T must be single valued so that inverse exists

– T must be monotonically increasing so that the order of gray values
are preserved

– T (r) must be between 0 and 1, so that the output gray values are
valid
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Histogram Equalization (Cont.)

• Let ps(s) denote the PDF of s and pr(r) pdf of r, then we have from
probability theory that

ps(s) = pr(r)
∣∣∣∣dr

ds

∣∣∣∣
• Since we want to equalize the histogram we must have ps(s) = 1 when

s < 0 < 1

• Then

1 = pr(r)
∣∣∣∣dr

ds

∣∣∣∣
• We obtain ∣∣∣∣dr

ds

∣∣∣∣ = pr(r)
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Histogram Equalization (Cont.)

• If we use the integral of pr(r) as our transformation

T (r) =
∫ r

0

pr(r′)dr′

then we readily have
dr

ds
= pr(r)

• Then regardless of the content of an image, if we use a gray level
transformation of the form

T (r) =
∫ r

0

pr(r′)dr′

the resulting histogram is uniform
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Histogram Equalization (Cont.)

• The discrete approximation of the histogram euqlizer is then

T (rk) =
∑

j

pr(rj)

• This transformation does not result in an exactly uniform histogram,
but spreads it towards unity
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Histogram Matching

• We sometimes prefer a shape other than uniform for the desired
histogram

• In this case we specify a desired histogram and develop a method to
obtain it

• The development is straightforward in two steps

– Find the histogram euqalizer of the original image, T1

– Find the histogram euqalizer using the desired histogram T2

– Then the transformation T−1
2 T1 will take the original histogram and

produce the desired one

– Difficulty arises because in practice it is not easy to obtain analytical
forms for these inverses
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Histogram Matching: Implementation

• Let us define original gray levels r, the equalized gray level s, the desired
gray level z

• We have s = T1(r) and s = T2(z) as well as z = T−1
2 T1(r)

• The difficulty is to computer T−1
2

• Therefore instead of computing z using the inverse we perform the
following

T2(z) = T1(r)

or
T2(z)− T1(r) = 0

• We can search for the vallues of z that minimizes T2(z)− T1(r) since we
can calculate T1 and T2
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Image Enhancement with Arithmetic Operations:
Subtraction

• Simply the subtraction of gray level values pixel by pixel

• Useful in identifying the differences in images

• E.g. you developed a compression algorithm, when two images (original
and compressed) are put side by side differences may not be noticable

• When you subtract the image, you will see the differences (artifacts)
more clearly

• We need to scale appropriately so that the difference image has all valid
gray values
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Image Enhancement with Arithmetic Operations:
Averaging

• Simply averaging of two images pixel by pixel

• Do not confuse by low-pass filtering (averaging of a neighborhood in the
same image)

• Useful for example in noise reduction

• You can obtain several images of the same object and averaga them out
to reduce noise

• Another application area: evaluate quality of image registration
(aligning) algorithms

• When the aligning quality is good the averaged image will preserve edges
etc

• When the aligning quality is poor the averaged image will be blurred
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Image Enhancement with Arithmetic Operatins:
Multiplication

• Image multiplication is mostly used for masking purposes

• Input image is multiplied by a binary image to mask a certain part of
the image


