Outline

- Highpass Filters in the Frequency domain
- Ideal Highpass Filters
- Butterworth Highpass Filters
- Gaussian Highpass Filters
- Laplacian in the Frequency Domain
- Homomorphic Filtering
- Implementation Issues for Frequency Domain Filters
- Correlation of Images
- Practice Problems

Highpass Filters in the Frequency Domain

- Considering that the image consists of some low-frequency components and high frequency components: if we have a filter preserving the low frequency components, then one minus that filter will preserve the high-frequency components
- Then, we use the general form of highpass filters as follows

$$
H_{\mathrm{hp}}(u, v)=1-H_{\mathrm{lp}}(u, v)
$$

Highpass Filters in the Frequency Domain

- Ideal highpass filter has the form

$$
H(u, v)= \begin{cases}0 & D(u, v) \leq D_{0} \\ 1 & D(u, v) \geq D_{0}\end{cases}
$$

- Butterworth

$$
H(u, v)=1-\frac{1}{1+\left[D(u, v) / D_{0}\right]^{2 n}}=\frac{1}{1+\left[D_{0} / D(u, v)\right]^{2 n}}
$$

- Gaussian

$$
H(u, v)=1-e^{-D^{2}(u, v) /\left(2 D_{0}^{2}\right)}
$$

Highpass Filters in the Spatial Domain

Left: ideal, center: Butterworth, right: Gaussian

Ideal Highpass Filtering: Image Example

Left: ideal, center: Butterworth, right: Gaussian

Butterworth Highpass Filtering: Image Example

Left: ideal, center: Butterworth, right: Gaussian

Gaussian Highpass Filtering: Image Example

Left: ideal, center: Butterworth, right: Gaussian

Laplacian in the Frequency Domain

- Using the FT property we know that

$$
\mathcal{F}\left\{\frac{\mathrm{d} f(x)}{\mathrm{d} x^{n}}\right\}=(j u)^{n} F(u)
$$

- Then the Laplacian in the frequency domain is

$$
H(u, v)=-\left(u^{2}+v^{2}\right) F(u, v)
$$

- If we center the FT by multiplying the image by $(-1)^{x+y}$, then we must center the filter as well

$$
H(u, v)=-\left[(u-M / 2)^{2}+(v-N / 2)^{2}\right]
$$

- The spatial representation can be obtained by taking the inverse FT

Modifications to Laplacian in the Frequency Domain

- We can further enhance the image by adding the original image to the fitlered version as in the spatial domain

$$
H(u, v)=1+\left[(u-M / 2)^{2}+(v-N / 2)^{2}\right]
$$

- We can also use boosting to increase the average gray level of the image as in the spatial domain

$$
H(u, v)=1+\left[(u-M / 2)^{2}+(v-N / 2)^{2}\right]
$$

- We can emphasize the frequency components more when necessary

$$
H(u, v)=1+a\left[(u-M / 2)^{2}+(v-N / 2)^{2}\right]
$$

where $a>1$

Top-left: Freq. Domain, top-right, Freq. domain as an image, bottom-left: spatial domain, bottom-right: spatial domain zoomed, approximate used in previous chapter

Top-left: original, top-right: butterworth, bottom-left: high-freq. comp. emphasized, bottom-right: histogram equalized version of bottom-left

Homomorphic Filtering

- What if we want to enhance the high-freq components and low-frequency components in one combined filtering operation
- Is this possible: the answer is yes
- Let us start by modeling our image as a product of illimunation and reflectance components
- Illimunation: our light source, usually low pass nature
- Reflectance: property of the object, has also high-pass nature
- The image is then modeled as

$$
f(x, y)=i(x, y) r(x, y)
$$

Homomorphic Filtering (cont.)

- We would like to process the illimunation and reflectance components separately
- It is not possible to do that directly, since the model involves the product
- We use a trick and take the log of the image so that the two components are now added

$$
z(x, y)=\ln [f(x, y)]=\ln [i(x, y)]+\ln [r(x, y)]
$$

- We filter z instead of f and then take the exponential to recover the image

$$
S(u, v)=H(u, v) Z(u, v)=H(u, v) F_{i}(u, v)+H(u, v) F_{r}(u, v)
$$

where F_{i} and F_{r} represent the FT of log of illimunation and reflectance components

Homomorphic Filtering (cont.)

- The filtered image is the exponential of $s(x, y)$

$$
g(x, y)=e^{s(x, y)}=e^{i^{\prime}(x, y)} e^{r^{\prime}(x, y)}
$$

where $i^{\prime}(x, y)$ is the inverse FT of $H(u, v) F_{i}(u, v)$, and $r^{\prime}(x, y)$ is defined similarly

Homomorphic Filtering: Example

Top: filter, bottom-left: original, bottom-right: filtered

Implementation Issues: Properties of the 2-D FT

- Shifting property: $f\left(x-x_{0}, y-y_{0}\right) \leftrightarrow F(u, v) e^{-j 2 \pi\left(u x_{0} / M+v y_{0} / N\right.}$
- Linearity: $a f(x, y)+b g(x, y) \leftrightarrow a F(u, v)+b G(u, v)$
- Scaling: $f(a x, b y) \leftrightarrow \frac{1}{|a b|} F(u / a, v / b)$
- Rotation (using polar coordinates): $f\left(r, \theta+\theta_{0}\right) \leftrightarrow F\left(\omega, \phi+\theta_{0}\right)$
- Periodicity of the discrete FT: $F(u, v)=F(u+M k, v+N l)$ where the image is of size $M \times N$, and k, l are any integers
- Symmetry: $F^{*}(u, v)=F(-u,-v)$
- Discrete 2-D FT is separable, we can use two consecutive 1-D FT to implement the 2-D FT

$$
F(u, v)=\mathcal{F}_{1 \mathrm{D}_{\mathrm{y}}}\left\{\mathcal{F}_{1 \mathrm{D}_{\mathrm{x}}}\{f(x, y)\}\right\}
$$

Implementation Issues: Zero Padding

- Discrete FT of any image is periodic
- Therefore when performing the convolution, the parts that should normally be zero have values from adjacent periods causing errenous results
- Solution is to zero pad the signals so that when the convolution is computed there are no contributions from adjacent periods

Implementations Issues: Zero Padding (Cont.)

Left: correct convolution, right: convolution with periodicity involved producing errenous results

Implementations Issues: Zero Padding (Cont.)

Convolution with periodicity involved producing correct results due to zero padding

Implementations Issues: Zero Padding in 2-D

Result of filtering in the frequency domain without properly padding the input images

Properly extended (padded) image

Zero-padding in 2-D

Correlation of Images

- Let us define the following function (correlation) of two images

$$
f(x, y) \circ g(x, y)=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x+m, y+n)
$$

where the images are real valued

- Similar to the convolution, we need to zero pad to obtain the correct correlation values
- We have the following property analogus to the convolution property

$$
f(x, y) \circ g(x, y) \leftrightarrow F *(u, v) G(u, v)
$$

- Correlation is mostly used for matching purposes, since the correlation will have a large value when the two functions are close and a small value otherwise

Correlation of Images: Example

Top-left: original image, top right: template of the object to be found, middle-left: original with zero padding, middle-right: original with zero padding, bottom-left: correlation function, bottom-right profile of one row where best match occurs

