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Outline

• Image Restoration

– Introduction

– Mathematical modeling

– Noise models

– Denoising in the spatial domain

– Denoising in the frequency domain
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Image Restoration: Introduction

• Goal: Recover an image that is altered by a system

• Most of the time, the system itself is known, or some prior information is
available

• If the degradation is known, a form of inverse is applied to the observed
image to estimate the desired image

• If the degradation is not known, the degradation and the image is
estimated simultaneously, such techniques are called “blind” estimation
techniques
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Image Restoration: Introduction (Cont.)

• Examples:

– An image is blurred, and we want to recover the original image by
deblurring

– The image is altered significantly due to the physics of the image
acquisiton technique, e.g. PET image reconstruction where the
measurements are not the images themselves but the image altered
by a linear system

– Series of images (video) are acquired when the object or the camera
is moving, blurring occurs, but it is not a simple blurring depending
on the motion path of the camera or the object

– An image is acquired from an angle resulting e.g. perspective
deformation, we would like to recover the original image
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Image Restoration: Mathematical Modeling

• Assuming that the degradation function is linear shift invariant we have
the observation model

g(x, y) = h(x, y) ∗ f(x, y) + n(x, y)

• In the frequency domain

G(u, v) = H(u, v) ∗ F (u, v) + N(u, v)

• Then the estimate of the original function is given by a restoration
system r(x, y)

f̂(x, y) = r(x, y) ∗ g(x, y)

• Or in the frequency domain

F̂ (u, v) = R(u, v)G(u, v)
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Image Restoration: Mathematical Modeling (Cont.)

• The restoration function r(x, y) is selected depending on a cost function

fopt(x, y) = arg min
f(x,y)

{ĝ(x, y), r(x, y), f(x, y)}

• If we are considering the blind techniques then we have

fopt(x, y) = arg min
f(x,y),r(x,y)

{ĝ(x, y), r(x, y), f(x, y)}
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Image Restoration: Noise Models

• Noise model that best fits the restoration problem depends very much on
how the image is acquired

• For simplicity, we assume that the noise is spatially invariant and
independent from the image
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Image Restoration: Noise Models (Cont.)

• Noise Models

– Gaussian noise: can be valid in several applications due to the central
limit theorem

p(z) =
1√

2πσ2
e−(z−µ)2/2σ2

where µ denotes the mean and σ2 denotes the variance

– Rayleigh noise: useful for modeling non-symmetric noise

p(z) =

 2
b (z − a)e−(z−a)2/b z ≥ a

0, otherwise

resulting in the mean and variance values

µ = a +
√

πb/4 and σ2 =
b(4− π)

4
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Image Restoration: Noise Models (Cont.)

• Exponential noise: useful for positive noise values when large noise
values are less probable

p(z) =

 ae−az z ≥ 0

0 otherwise

• Impulse Noise (Salt and Pepper): models point noises

p(z) =


Pa z = a

Pb z = b

0 otherwise

• Poisson Noise: useful when the image acquisition have discrete counts
(such as photon or electrons)

p(z;λ) =
e−λλz

z!
with mean and variance both equal to λ
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Image Restoration: Noise Models (Cont.)

• Periodic noise: watch out! spatially variant noise, useful for modeling
noise due to electronics

• Estimation of noise

– Some prior information or the physics of the image acquisition
technique can be used to model the noise

– A known simple object can be imaged, and the resulting image will
have information related to the system noise
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Image Restoration: Estimation of Noise Parameters

Left: Normal noise, right: Rayleigh noise
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Image Restoration: Estimation of Noise Parameters
(Cont.)

Left: Exponential noise, middle: uniform noise, salt and pepper noise
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Image Restoration: Estimation of Noise Parameters
(Cont.)

• Once the constant object is imaged, estimates of the mean and variance
can be obtained by

µ̂ =
∑
zi

zip(zi) and σ̂2 =
∑
zi

(zi − µ)2p(zi)

• Mean and variance can be used to solve for the unknown parameters of
particular noise PDF’s
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Image Restoration: Noise Reduction with Mean Filters

• In this case the noise is the only degradation, that is h(x, y) is the
identity operation

g(x, y) = f(x, y) + n(x, y)

G(u, v) = F (u, v) + N(u, v)

• We can use spatial filters to reduce noise as noted in the previous lectures

– Arithmetic mean: f̂(x, y) = 1
mn

∑
s,t g(s, t)

– Geometric mean: f̂(x, y) = [
∑

s,t g(s, t)]
1

mn

– Harmonic mean: f̂(x, y) = mn∑
st

1
g(s,t)

– Contraharmonic mean filter, more general

f̂(x, y) =

∑
s,t g(s, t)Q+1∑

s,t g(s, t)Q

– Contraharmonic reduces to arithmetic when Q = 1 and harmonic
when Q = −1
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Image Restoration: Noise Reduction with
Order-Statistics Filters

• Median: f̂(x, y) = median{f(x, y)}

• Max: f̂(x, y) = max{f(x, y)}

• Min: f̂(x, y) = min{f(x, y)}

• Midpoint: f̂(x, y) = {min{f(x, y)}+ max{f(x, y)}}/2

• Trimmed filter: zero d/2 lowest and d/2 highest values in the window
producing gd(s, t), then trimmed filter results in

f̂(x, y) =
1

mn− d

∑
s,t

gd(s, t)



'

&

$

%

Image Restoration: Noise Reduction Image Example

Top-left: additive noisy image, Top-middle: salt and pepper noise added,
top-right: arithmetic filter, bottom-left: geometric filter, bottom-middle:
median filter, bottom-right: trimmed filter, d = 5
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Image Restoration: Adaptive Filters

• Until now, all filters are assumed to be global, that is same value
regardless of the image content

• Adaptive filters are filters with varying characteristic with respect to the
image content

• Improved performance, but inreased cost since the filter coefficients vary

• Let our filter to vary with respect to the mean and variance of the image
window that is being filtered

• One way to do adaptive filtering is to use a lot of smoothing when the
local variance is low (no detailed information) to reduce noise, and use
filtering close to identity when the variance is high (detailed information
that we want to keep)
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Image Restoration: Adaptive Filters (Cont.)

• A filter that performs these are

f̂(x, y) = g(x, y)− σ2
n

σ2
L

[g(x, y)− µL]

where σ2
n is the global image variance, σ2

L the local image variance, and
µL the local mean

• Assumes that σ2
n ≤ σ2

L, this should be checked, if violated set it to 1, or
arrange dynamic range so aht resulting negative gray values are corrected
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Image Restoration: Adaptive Filters (Cont.)

• We can have an adaptive median filter that changes size with respect to
the image content, larger size → more blurring, smaller size → less
blurring

• The steps of adaptive median filtering is as follows

– If the median is not between the min and max increase window size,
until it is or, until a maximum window size is reached

– Then if the current pixel is not the min or max, keep it; otherwise
replace it with the median

– This algorithm provides the reduction of salt-pepper noise, but also
reduces blurring preserving detailed information which migh be
valuable
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Image Restoration: Adaptive Filters Image Example

Top-left: additive noisy image, Top-right: arithmetic mean, bottom-left:
geometric mean, bottom-right: adaptive filter
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Image Restoration: Adaptive Median Filter Image
Example

Left: noisy image, middle: median, right: adaptive median
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Image Restoration: Image Denoising in the Frequency
Domain

• We add a few more filters to the ones discussed before for noise reduction

• Bandpass filters: we consider similar (ideal, Butterworth, and Gaussian
bandpass filters which are given by

HI =

 0 D0 −W/2 ≤ D(u, v) ≤ D0 + W/2

1 otherwise

HBW =
1

1 +
[

D(u,v)W
D2(u,v)−D2

0

]2n

HG = 1− e
− 1

2

[
D2(u,v)−D2

0
D(u,v)W

]2n
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Image Restoration: Image Denoising in the Frequency
Domain (Cont.)

Left: ideal, middle: Butterworth, right: Gaussian
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Image Restoration: Notch Filters

• We can similarly have bandreject filters which are simply

HBR(u, v) = 1−HBP(u, v)

• Notch filters are filters that pass/reject frequencies around one o rmore
frequency values

• An ideal notch filter is

HN(u, v) =

 0 D1(u, v) ≤ D0 or D2(u, v) ≤ D0

1 otherwise

where
D1(u, v) = [(u−M/2− u0)2 + (v −N/2− v0)2]1/2

and
D1(u, v) = [(u−M/2 + u0)2 + (v −N/2 + v0)2]1/2

• Other notch filters can be derived based on the Butterworth and
Gaussian
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Image Restoration: Notch Filters(Cont.)

Top: ideal, bottom-right: Butterworth, bottom-left: Gaussian
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Image Restoration: Optimum Notch Filters

• In several cases there will be more than one noise components scattered
in the frequency domain

• We extract these noise components by a notch filter and then take the
inverse FT to obtain the noise in spatial domain

• Denoised image can be obtained by subtracting noise from the corrupted
image

• Mathematically

f̂(x, y) = g(x, y)− w(x, y)n(x, y)

where w(x, y) is a weighting function and

n(x, y) = F−1{H(u, v)G(u, v)}

with H(u, v) the notch filter and G(u, v) the corrupted image
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Image Restoration: Optimum Notch Filters (Cont.)

• “Optimum” notch filters that are the ones minimizing the local variance

• Local variance is

σ2(x, y) =
1

(2a + 1)(2b + 1)

∑
s

∑
t

[f̂(x + s, y + t)− ¯̂
f(x, y)]2

where
¯̂
f(x, y) =

1
(2a + 1)(2b + 1)

∑
s

∑
t

f̂(x + s, y + t)

• Asssuming a locally constant weight function, and taking the derivative
with respect to w(x, y), equating to zero results in

w(x, y) =
¯g(x, y)n(x, y)− ḡ(x, y)n̄(x, y)
n̄2(x, y)− n̄2(x, y)

• Calculate the optimum weight using these equations and use the notch
filter with this weight


