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Image Restoration: Linear Shift Invariant Degradations

• Let us assume that the degradation function is shift invariant then, the
degradation model becomes

g(x, y) =
∫ ∫

f(x, y, x′, y′)h(x− x′, y − y′)dx′dy′ + n(x, y)

whereas it is

g(x, y) =
∫ ∫

f(x, y, x′, y′)h(x, x′, y, y′)dx′dy′ + n(x, y)

for a general linear degradation

• The degradation function is 4-D for the general linear case while it is
2-D for the shift-invariant case

• The degradation model can be written in the Fourier domain *only*
when the degradation is shift invariant

G(u, v) = F (u, v)H(u, v) + N(u, v)
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Estimation of the Degradation Function

• We can estimate the degradation function in several ways depending on
the prior knowledge we have and acessability of the imaging system

– Estimation by image observation: assume that we know the
characteristics of the object and we can reconstruct the original
image by e.g. deblurring

– Estimation by experimentation: assuming the imaging equipment is
available for experimentation

– Parametric modeling: assuming some prior knowledge on the system
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Image Restoration: Esimation of the Degradation
Function by Image Observation

• Assume that we can obtain a good estimate of the original image by
some technique. Then the degradation function for a part of the image
with high SNR is

Hs(u, v) =
Gs(u, v)
F̂s(u, v)

Since we assume LSI degradation, we can construct the H(u, v) for the
whole image using Hs(u, v)
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Image Restoration: Estimation of the Degradation
Function by Experimentation

• If we have access to the imaging system, then we can experiment with it
until we obtain similar degradation of the images at hand

• Once the imaging sytem is set to operata on a set of conditions, we can
image an impulse response, than the resulting image will simply be the
degradation of the sytem

H(u, v) = G(u, v)/A

where G(u, v) is the image of an impulse with power A
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Image Restoration: Estimation of the Degradation
Function by Parametric Modeling

• Assuming that we have prior knowledge related to the degradation
function (or the imaging system), we can use this knowledge to construct
a parametric model, and then estimate only these parameters instead of
estimating the whole degradation function

• We model the degradation function as

H(u, v) = D(u, v, θ1, . . . , θm)

where D is a known functional form, and θ1, . . . , θm are the unknown
parameters of the degradation function that need to be estimated

• Most of the time D can be obtained using the physics of the imaging
system
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Image Restoration by Inverse Filtering

• We can invert the degradation function and apply it to the observation
to recover an estimate of the original image

F̂ (u, v) = F (u, v) +
N(u, v)
H(u, v)

• The problem is that the noise values are amplified when H(u, v) has a
small value

• This problem is called as being “ill-conditioned”

• One solution is simply exclude the values of H(u, v) which are very small
by considering the low pass region
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Image Restoration by direct Inverse Filtering: Image
Example

Top-left: Observed, top-right: direct inverse filtering with radius 40,
bottom-left: radius 70, bottom-right: radius 85
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Image Restoration by Minimum Mean Squared Error
Filtering

• Since direct inverse filtering have problems of amplifying the noise, let us
consider an inverting scheme that takes noise into account

• We will choose a filter that minimizes the mean squared error (MSE)
between the estimated and the original image

f̂MMSE = arg min
f̂

E{|f − f̂ |2}

• The solution can be obtained by taking derivatives and equating to zero

F̂ (u, v) =
[

H∗(u, v)Sf (u, v)
Sf (u, v)|H(u, v)|2 + Sn(u, v)

]
G(u, v)
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Image Restoration by Minimum Mean Squared Error
Filtering (Cont.)

• Rearranging terms

F̂ (u, v) =
[

1
H(u, v)

|H(u, v)|2

|H(u, v)|2 + Sn(u, v)/Sf (u, v)

]
• Note that the Wiener Filter requires the knowledge of second order

statistics of the image and noise, Sf and Sn, the power spectrums of the
image and noise.

• If these are now known we can replace the ratio by a constant (related to
SNR)
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Image Restoration by Direct Inverse Filtering and
Wiener Filtering: A Comparison

Left: Direct inverse filtering, center: radially limited direct inverse filtering,
right: Wiener filtering
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Image Restoration by Constrained Filtering

• Wiener filter requires knowledge of power spectrum, and approximations
of constant is not always a good approximation

• Remember the problem was the noise amplification in direct filtering

• In constrained filtering, we basically minimize the noise variance
(limiting noise amplification) subject to the constraint coming from the
degradation model

• Mathematically
f̂ = arg min

f̂

∑ ∑
[∇2f(x, y)]2

subject to the constraint

|g −Hf̂ |2 = |n|2
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Image Restoration by Constrained Filtering (Cont.)

• The solution to this constrained problem is

F̂ (u, v) =
[

H∗(u, v)
|H(u, v)|2 + γ|P (u, v)|2

]
G(u, v)

where P (u, v) is the FT of 
0 −1 0

−1 −4 −1

0 −1 0


and γ is a free parameter to be adjusted to satisfy the constraint
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Image Restoration by Constrained Filtering (Cont.)

• To calculate the γ value systematically using an iterative approach, we
define

r = φ(γ) = |g −Hf̂ |2

which can be shown to be an increasing function of γ

• Simply start with an initial γ value, and then increase it or decrease it
depending on |R|2 being larger or smaller than |n|2 within a tolerance
range

• Stop when |r|2 is close enough to |n|2

• The quantities required are |r|2 and |n|2

• The term |r|2 can be calculated by its definition
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Image Restoration by Constrained Filtering (Cont.)

• The term |n|2 can be calculated by using the estimate of the variance

σ2
n =

1
MN

∑ ∑
[n(x, y)− µn]2

where µn = 1/MN
∑∑

n(x, y)

• Arranging terms results in

|n|2 = MN [σ2
n + µ2

n]

• The algorithm then only requires the knowledge of mean and variance of
the noise which can be estimated
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Image Restoration by Geometric Transformations
(Cont.)

• Spatial transformations of freq. domain filtering: modifies pixel values

• Geometric transformations: modifies pixel locations

• Examples of geometric transformations: perspective transformation,
translation, rotation, affine transformations, etc.

• Assume the original coordinates of a pixel are x, y, then the transformed
coordinates (x′, y′) are

x′ = r(x, y) and y′ = s(x, y)

where r and s determine the type and nature of the geometric
transformations

• Our goal is to find what the deformations (r and s) are and then apply
the inverses to restore the original image
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Image Restoration by Geometric Transformations:
Landmarks

• In several applications, isolated points or features are used to estimate r

and s

• These isolated points and features are called landmarks, and their
locations are assumed to be known both at the original and the distorted
image

• We need sufficient number of landmarks so that all parameters in r and
s can be estimated

• E.g.: MR images, the patient or subject are attached visible marks with
known exact location. When the MR image is produced, these locations
will be varied because of deformation. Since we know the original
locations of these landmarks, we can find the deformation function and
apply the inverse to the whole image to restore the original image

• Also known as a subtopic of “image registration” where the goal is to
align two images
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Image Restoration by Geometric Transformations:
Interpolation

• When s and r values are found, to restore the original image we almost
always need values of the image where it is not sampled (non-integer
pixel values)

• Several techniques can be used for interpolation considerin the tradeoff
between complexity and accuracy

• Simplest method is to use the nearest neighbour, not so accurate but
very simple

• More accurate methods such as bilinear or cubic interpolation methods
can be used with the price of increased computation
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Image Restoration by Geometric Transformations:
Image Example

Top-left: original image, top-middle: distorted landmarks, top-right:
distorted image (nearest neighbour), bottom-left: restored image (nearest
neighbour), bottom-middle: distorted image (bilinear), bottom-left: restored
image (bilinear)
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Multiresolution Image Processing: Introduction

• Multi-resolution image processing processes the image at different
resolutions

• Wavelet transform is a mathemetical tool that allows us to perform
multi-resolution processing

• Wavelet transform is a transform with basis functions other than
exponentials (as in the FT)

• The basis functions are limited in space also, hence carrying information
related to both frequency and space
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Multiresolution Image Processing: Image Pyramids

• An image pyramid is constructed by downsampling the image at each
step by 2 until a 1× 1 image is reached

• Both the coarse approximations and the differences between the original
and coarse approximations can be stored so that the original image can
be restored lates

Left: Image pyramid, right: block diagram for one level
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Multiresolution Image Processing: Subband coding

• We separate the original image into its subbands using filterbanks

Top: The filterbank, bottom: subbands of the image
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Multiresolution Image Processing: Subband Coding

• The reconstruted image at the left handside of the filter bank has the
z-transform

X(z) = 0.5[H0(z)G0(z) + H1(z)G1(z)]X(z)

+0.5[H0(−z)G0(−z) + H1(−z)G1(−z)]X(−z)

• If we would like to have a perfect reconstruction (PR, shifts and
intensity scaling ok), then we must have

H0(z)G0(z) + H1(z)G1(z) = Kz−k

H0(−z)G0(−z) + H1(−z)G1(−z) = 0

• We can have several solutions to these equations
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Multiresolution Image Processing: Subband Coding
(Cont.)

Three PR filterbanks


