-~

Outline

e Multiresolution Image Processing

— Multi-resolution Expansions

x (General Series Expansions
x Scaling Functions

x MRA Requirements

x Wavelet Functions

— Wavelet Transforms

x Wayvelet Series Expansions

x Continuous Wavelet Transform
x Fast Wavelet Transform

x 2-D Wavelet Transform




/ Multiresolution Expansions: General Series Expansions\

e A signal can be represented as a linear combination of expansion

functions

flz) =) axr(z)
k

e If the expansion function is complete, then any function can be

represented using a discrete set of a; values

e If the basis functions are orthonormal then «’s can be calculated easily

using
o= [ G (@) (a)de
e If the basis functions are orthogonal then we have

o= [ ila)f (@)

where ¢y, is a dual basis functions that are orthonormal to the original

\ basis functions /
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Multiresolution Expansions

We use scaling functions to create approximations of an image at

different resolutions

The difference between the original and the approximations can be also

encoded and kept for perfect reconstruction

A scaling function has the general form
din(x) = 29/2(29x — k)

The parameter k denotes the location, 7 the width and amplitude of the

function

If we choose an appropriate ¢(x) we can create a basis functions that are

complete and orthonormal

/
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An Example of Multiresolution Expansions: Haar
Function

e Consider the simplest expansion function ¢(x)

o(z) = 1 O0<z<l1

0 otherwise

e Using this function and scaling functions we can create a set of basis

functions that can represent any 2-D image
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Multiresolution Expansions: MRA Requirements
e Scaling Functions is orthogonal to its integer translates

e The subspaces spanned at low scales (small j values) are within those
spanned at higher scales (large j values)

L.CcVoi V...
e The zero image is in the span of all expansion functions at any scale

e Any L? can be represented with arbitrary precision with the basis
functions when all scales are used

-




4 N

Multiresolution Expansions: MRA Requirements

o If all four MRA requirements are satisfied then

¢jk Zanqbﬁ-l n

e Since ¢ is a scaling function we obtain

¢jk Z h¢ 2<‘7+1)/2¢(2j+1$ . n)

e Or more simply written as
Z he(n)V2¢(22 — n)

called the refinement or dilation equation

- /
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Multiresolution Expansions: Wavelet Functions

e Now let us consider a second set of functions called wavelet functions
Y (x) that span the difference denoted by W; between adjacent scaling

subspaces
Visn=V; & W,

e Wavelets then are defined as
ik(z) = 29220z — k)
e We can represent any function as part of the space

Vo Wo W1 @ Wy ..

e We can also eliminite V{y by going to the negative values

LW e Wee W e W, ..

- /
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Multiresolution Expansions: Wavelet Functions (Cont.)

e Since wavelets are created with scaling functions

Zhw )2y (22 — n)

e The relation between ¢ and 1 is

ho(n) = (=1)"hy(1 = n)




Haar Wavelets

e Using the haar functions and previous equation, we can obtain Haar

wavelets

(1 0<z<05

() =< -1 05<z<1

0 otherwise

\




Wavelet Transforms: Wavelet Expansions

e Any function can be represented in terms of scaling and wavelet

functions as
f(x):ZCJO quok +sz %k
k Jj=Jjo k

e If we have orthonormal basis functions then

o) = / F(2) 650 1 () da
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Wavelet Transforms: Discrete Wavelet Transform

e Wavelet Series Expansion becomes the Discrete Wavelet Transform when
the input signal is discrete

flz] Zm Jo, k)b joil@ Z > Wy (o, k)t kl]

Jjok

e The inverse transforms are given by

Wolin k) = <= 3 1()6504(a)

Wy o.k) = <= 3 F@)tjor(a)

e The Wy’s are called approximation coefficients and Wy,’s are called the

/

detail coefficients
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Wavelet Transforms: Fast Wavelet Transform

e Fast Wavelet Transform exploits the relation between W'’s at adjacent

scaling (j = jo and j = jo + 1)

e To derive this relation let us start with the definition
, 1
We(j k) = \/—M zx: f(x)jk(T)
e Substitute definition of scaling function
1 . |
Wy(j, k) = —— 2)29/2p(20x — k
0K = 2 3 F@2 o =k

e Using dilation equation and a change of variables m = 2k +n

Woliik) = == 3 F(@) 3 ho(m = 2K)V26(2* 1o — m)
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Wavelet Transforms: Fast Wavelet Transform (Cont.)

e Rewrite as
k) = 3 ho(m = 26) = 3 F@)o (202 — m)

resulting in

Zh¢ —2]€ W¢(]—|—1 m)




Wavelet Transforms: Fast Wavelet Transform

Wy(d — 1,n) e— 24 h,(n)

Wiyl —2,n) e— 24 hy(n) CI— Wl n)

We(J — 2,n) e—| 24 h.(n)

Fast Wavelet Transform Implemented with a filter bank

-
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2-D Wavelet Transforms

e Wayvelet transform is extended to 2-D easily

F@,y) = s 2m 2on Weldo, 1, 1) Y0 mn (7, y)
A Y ivn e Lo o Wi (4, m,m) 0
where
Gjmom(@,y) =272¢(27 2 — m, 27y — n)
P (,y) = 2290 (20 —m, 2y — n)

with ¢ denoting one of D,H,V components defined as

P (2, y) = Y(z)Y(y)

Y (2, y) = v(z)o(y)
Y (z,y) = ¢(2)Y(y)
¢V (z,y) = ¢(z)d(y)

(%)

J.m,n

~

(z,y)
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Wavelet Transforms: 2-D Wavelet Transform

2y

n
—® W, (/,m.n)

24

Wel(i + 1.m, n)e—

Columns
(along n)

Rows
(along m)

24

V.
| W, (j.m.n)

Rows

24

H
a W, (jmn)

2y
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Columns

Rows

24

® Wel(j.m,n)

Rows

Fast Wavelet Transform Implemented with a filter bank, analysis part




Wavelet Transforms: 2-D Wavelet Transform

Wf{;, m, n) & 24 hy(m)

Rows
(along m) + 24 hyi(n)
v Columns
W (j. m, n) e— 24 he(m) (along n)
Rows

Welj + 1, m, n)

w7 m, n) 8— 24 | hy(m)

Rows G} 2+ h\-_; (ﬁ}

Columns

Wo(j, m, n) e— 24 he(m)

Rows

Fast Wavelet Transform Implemented with a filter bank, synthesis part
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Wavelet Transforms: 2-D Wavelet Transform

We(j + 1, m. n)

Separation of scaling functions
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Wavelet Transform: Image Example

Separation of scaling functions




