
'

&

$

%

Outline

• Image Segmentation

– Introduction

– Point/Line/Edge Detection

– Boundary Detection

'

&

$

%

Image Segmentation: Introduction

• The goal of image segmentation is to partition the image into several
parts depending on a similarity measure in a neighborhood

• Several applications include

– Motion detection

– Biometric recognition (e.g. face and eye segmentation)

– Image/video compression

– Fault detection in manufacturing

– Medical imaging

• You can either use (i) discontinuities to separate regions, or (ii) use
similarities to grow a region

'

&

$

%

Image Segmentation: Detection of Discontinuities

• Several masks can be used for this purpose depending on what needs to
be detected

– Point detection: 
−1 −1 −1

−1 8 −1

−1 −1 −1


– Line detection: from left to right horizontal, +45, vertical, -45

−1 −1 −1

2 2 2

−1 −1 −1



−1 −1 2

−1 2 −1

2 −1 −1



−1 2 −1

−1 2 −1

−1 2 −1




2 −1 −1

−1 2 −1

−1 −1 2


• We can see that smooth regions result in small values, whereas whenever

there is a feature of interest we obtain high values

• After these masks are applied, thresholding is used to stress extract the
features

'

&

$

%

Image Segmentation: Point Detection Example

Detection of a point

'

&

$

%

Image Segmentation: Line Detection Example

Detection of a line

'

&

$

%

Image Segmentation: Edge Detection

• Let us first have a look at what an edge looks like

'

&

$

%

Image Segmentation: Edge Detection (Cont.)

• We know from previous chapters that certain masks involving
approximate derivatives can be used for edge detection

• A line connecting the peaks in the second derivative can be used to find
the center of an edge

'

&

$

%

Image Segmentation: Edge Detection (Cont.)

• Although the derivative is a very useful tool in edge detection, it is very
sensitive to noise (since it emphasizes abrupt changes including noise
pixels)

• Then we should use smoothing before edge detection

'

&

$

%

Image Segmentation: Gradients

• The gradient of an image is

∇f =

 Gx

Gy

 =

 ∂f
∂x

∂g
∂y


• The magnitude of this vector is related to the strength of the change,

and its direction shows the direction of the change

• The amount of change given by the magnitude can be obtained with the
euclidian distance or the sum of absolute differences in x and y directions

'

&

$

%

Image Segmentation: Gradients (Cont.)

• In discrete images, several ways exist to approximate these partial
derivatives some of them are

Gxprewitt =


−1 −1 −1

0 0 0

1 1 1

 Gyprewitt =


−1 0 1

−1 0 1

−1 0 1



Gxsobel =


−1 2 −1

0 0 0

1 2 1

 Gysobel =


−1 0 1

−2 0 2

−1 0 1



'

&

$

%

Image Segmentation: Gradients

• We can similarly have operators for detecting diagonal discontinuties

Gd1prewitt =


0 1 1

−1 0 1

−1 −1 0

 Gd2prewitt =


−1 −1 0

−1 0 1

0 1 1



Gd1sobel =


0 1 2

−1 0 1

−2 −1 0

 Gd2sobel =


−2 −1 0

−1 0 1

0 1 2



'

&

$

%

Image Segmentation: Gradient Image Examples

Top-left: original, top right |Gx|, center-left: |Gy|, center-right: |Gx|+ |Gy|,
bottom: diagonal edges

'

&

$

%

Image Segmentation: The Laplacian

• Remember the definition of the Laplacian

∇2f =
∂2f

∂x2
+

∂2f

∂y2

• We can approximate it using the following masks
0 −1 0

−1 4 −1

0 −1 0



−1 −1 −1

−1 8 −1

−1 −1 −1


• Usually Laplacian is not directly used because of its sensitivity to noise

(second derivatives)

'

&

$

%

Image Segmentation: The Laplacian of Gaussian

• We can then combine it with smoothing to be able to use in practice,
assume we use the following smoothing filter

h(r) = −e−
r2

2σ2

• Then we take the second derivative

• Since both operations are linear this is equivalent to taking the second
derivative of h and then convolving with the image

• Then the total operation is given by convolving the image with

∇2h(r) = −
[
r2 − σ2

σ4

]
e−

r2

2σ2

'

&

$

%

Image Segmentation: The Laplacian of Gaussian (Cont.)

• This operation can be approximated by the following mask usually
called LoG (Laplacian of Gaussian)

0 0 −1 0 0

0 −1 −2 −1 0

−1 −2 16 −2 −1

0 −1 −2 −1 0

0 0 −1 0 0



'

&

$

%

Image Segmentation: Plot of LoG

'

&

$

%

Image Segmentation: LoG Image Example

Application of LoG

'

&

$

%

Image Segmentation: Boundary Detection

• To complete a segmentation algorithm edges are not sufficient, we need
to conver these edges to boundaries that surround the segments of
interest

• Detected edges are usually broken, due to noise and non-ideal objects
etc., and need to be linked to form boundaries

• We can process the edges locally or globally for this purpose

'

&

$

%

Image Segmentation: Local Processing for Edge Linking

• We look at each and every point that are assigned as an edge pixel and
its neighborhood

• We make the neighborhood pixel also an edge pixel if

– the gradient magnitudes are similar: |∇f(x, y)−∇f(x0, y0)| < T1

– and the gradient directions are similar: |α(x, y)− α(x0, y0)| < T2

'

&

$

%

Image Segmentation: Local Professing for Edge Linking
- Image Example

Application of edge linking

'

&

$

%

Image Segmentation: Global Processing for Edge Linking

• Here, we look at the pixels globally, and determine if they belong to a
prespecified shape (which is or is part of a boundary of a segment)

• Hough Transform can be used for this purpose

• Hought Transform is simply an algorithm to find the points that lie on a
specified curve

'

&

$

%

Image Segmentation: Hough Transform for Edge Linking

• Assume that we are trying to find points on a line yi = axib, our goal is
to find the line (parametrized by a and b) so the unknown quantities are
actually a and b

• Then, b = −xia + yi

• We divide the all possible values of a and b into groups
a = [a1, a2, . . . , aK] and b = [b1, b2, . . . , bK]

• For each of the a value and for each point (xi, yi) we solve for b round it
to the closest b value, and count the points that belongs to each of the
a, b pair

• Obviously each of the (a, b) pairs represent a line, and the higher the K

the more accurate and more computationally expensive the algorithm is

'

&

$

%

Image Segmentation: Hough Transform for Edge Linking

• The cartesian form of the line has the problem that, vertical lines have
values of infinity

• To avoid that numerical problem we can use the normal representation
of a line

x cos(θ) + y sin(θ) = ρ

• The Hough Transform can be used for other curves (other than line),
e.g. a circle: (x− c1)2 + (y − c2)2 = c2

3

'

&

$

%

Image Segmentation: Illustration of Hough Transform

Illustration of the Hough Transform

'

&

$

%

Image Segmentationl: Hough Transform - Image
Example

Application of the Hough Transform

