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Random Processes/Signals Definition

• A random signal is an extension of a random variable. When a random
variable changes value as a function of time, it is called a random signal

• E.g.: Temprature in Chicago on next monday is a random variable
Temprature in Chicago on mondays is a random signal

• A random process is a collection of ensembles of sample functions (each
of these functions are random signals)

• E.g.: Tempratute in different cities on mondays is a random process

• We use x to denote random variables, x(t) to denote random signals,
and X(S, t) or X(t) to denote random processes where S is a variable
denoting the ensemble (e.g. city name) and t denotes the time variable
(e.g. 5th monday)
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Moments, Mean, Correlation, and Covariance

• The mth order moment of a random process is defined as

E{Xp
ti
} =

∫
xp

ti
p(xti)dxti

• First few moments have special names:

Mean : E{Xti
} = m(ti) =

∫
xtip(xti)dxti

Autocorrelation : E{Xti
Xtj

} = Rx(ti, tj)

=
∫ ∫

xtixtj p(xti)p(xtj )dxtidxtj

Crosscorrelation : E{Xti
Ytj

} = Rxy(ti, tj)

=
∫ ∫

xtiYtj p(xti)p(ytj )dxtidytj

Autocovariance : E{[Xti
−m(ti)][Xtj

−m(tj)]} = Cx(ti, tj)

= Rx(ti, tj)−m(ti)m(tj)

Crosscovariance : E{[Xti
−mx(ti)][Ytj

−my(tj)]} = Cxy(ti, tj)

= Rxy(ti, tj)−mx(ti)my(tj)
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Stationarity

• Stationarity means a steadiness of the characteristics of the random
process

• When a random process does not change over time, it is called to be
strict sense stationary

• Mathematically, a random process is SSS if

p(xt1 , xt2 , . . . , xtn) = p(xt1+τ , xt2+τ , . . . , xtn+τ )

for all τ

• Strict sense stationarity is a strong condition on a random process
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Stationarity (Cont.)

• Weaker stationarity definitions are made: A process is wide sense
stationary if first and second order moments do not change in time.
Mathematically, a process is WSS if

E{xt1} = E{xt1+τ}

and
E{xt1xt2} = E{xt1+τ ′xt2+τ ′}

• For τ ′ = −t2 the second equation becomes

E{xt1xt2} = E{x(t1−t2)x0}

• Using the short hand notation, we have

Rx(t1, t2) = Rx(t1 − t2) = Rx(τ)

for a WSS process
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Power Density Spectrum

• The frequency characteristics of a stationary random process is analyzed
through the power density spectrum defined as:

Sx(F ) =
∫

Rx(τ)e−j2πFτdτ

with its inverse

Rx(τ) =
∫

Sx(F )ej2πFτdF

• Observe that

E{X2
t } = Rx(0) =

∫
Sx(F )dF

hence the name

• For WSS random processes the autocorrelation function is even.
Therefore, the power density spectrum is always real
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Discrete-Time Random Signals

• All developments apply to the discrete case time variable being integers
now

• The power density spectrum is again the Fourier transform of the
correlation function:

Sx(f) =
∞∑

m=−∞
Rx(m)e−j2πfm

• The autocorrelation is given by the inverse

Sx(f) =
∫ 1/2

−1/2

Sx(f)ej2πfmdf
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Ergodicity

• Ergodicity means that we can obtain statistical moments from a single
realization

• As in stationarity we can have different degrees of ergodicity

• Mean-ergodic processes: mean of the time average is equal to the mean,
and variance of the time average is zero for large samples

• The statistical mean is
mx = E{Xn}

and the time average is

m̂x =
1

2N + 1

n=N∑
n=−N

x(n)

• The mean of m̂x is mx

• The condition for variance to be zero for large samples is:

Cx(m) → 0 as m →∞
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Ergodicity (Cont.)

• Correlation-Ergodic Processes: mean of the time correlation is equal to
the statistical correlation, and the variance of the time covariance is
zeros for large samples

• Throughout this course, we assume that the random processes we are
dealing with are mean-ergodic and correlation-ergodic

• Those two conditions are satisfied with most physical random processes



'

&

$

%

Innovations Processes

• A method to obtain any WSS process using a linear causal and
invertible filter excited by white noise

• Then this linear causal and invertible system will be determined by the
WSS process that we want to obtain

• White noise: power density spectrum=σ2
w

• Linear system: H(f)

• Output of the linear system σ2
w|H(f)|2
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Innovations Processes (Cont.)

• We want this output to be the autocorrelation function of any random
process:

Sx(f) = σ2
w|H(f)|2

• Switching to z-domain

Sx(z) = σ2
wH(z)H(z−1)

• Let

H(z) = exp

{ ∞∑
m=1

v[m]z−m

}
(1)

• We have

sx(z) = exp

{ ∞∑
m=−∞

v[m]z−m

}
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Innovations Processes (Cont.)

• Then, v[m] is the series such that its z transform is log[Sx(z)]

• That is

v[m] =
∫ 1/2

−1/2

log Sx(f)ej2πfmdf (2)

• Given a WSS process, calculate its power density spectrum

• Compute v[m] using Eq. (2)

• The linear system that will result in our random process (with its input
being white noise) can be constructed using Eq. (1)


