Outline

- Forward Linear Prediction
- Normal Equations
- Solution to Normal Equations
- Backward Linear Prediction
- Optimum Reflection Coefficients

Forward Linear Prediction

- The goal of forward prediction is to obtain a guess of a future value of a random process given its current and past values
- Consider the special case of one-step forward predictor:

$$
\hat{x}[n]=-\sum_{k=1}^{p} a_{p}[k] x[n-k]
$$

- The design of a predictor then consists of choosing the coefficients $a_{p}[i]$ where $i=1,2, \ldots, p$
- We can design the our linear predictor by minimizing the error between the predicted and real value

Forward Linear Prediction (cont.)

- This error is

$$
f_{p}[n]=x[n]-\hat{x}[n]=x[n]+\sum_{k=1}^{p} a_{p}[k] x[n-k]
$$

- Combining summation terms and $x[n]$ we obtain

$$
f_{p}[n]=\sum_{k=0}^{p} a_{p}[k] x[n-k]
$$

where we have defined $a_{p}[0]=1$

Forward Linear Prediction (Cont.)

- The system that takes $x[n]$ as its input and produces the error function $f_{p}[n]$ as its output is called the error filter and has the following z-transform

$$
A_{p}(z)=\sum_{k=0}^{p} a_{p}[k] z^{-k}
$$

- The resulting system is

$$
F_{p}(z)=A_{p}(z) X(z)
$$

Direct-form Implementation of Error Filter

- We can implement this error filter using the direct-form

Figure 12.3.2 Prediction-error filter.

Lattice-form Implementation of Error Filter

- And the lattice-form

Figure 12.3.3 p-stage lattice filter.

- Lattice form coefficients can be obtained from the direct form coefficients in a recursive fashinon

Normal Equations

- We can design a predictor by minimizing the energy of the error function

$$
\begin{aligned}
a_{p} & =\arg \min _{a_{p}} \mathrm{E}\left\{|f(p)|^{2}\right\} \\
& =\arg \min _{a_{p}} \mathrm{E}\left\{f_{p}[n] f_{p}^{*}[n]\right\}
\end{aligned}
$$

- Substituting $f_{p}[n]=x[n]+\sum_{k=1}^{p} a_{p}[k] x[n-k]$ we want to minimize

$$
\begin{aligned}
\mathrm{E}\left\{|x[n]|^{2}\right\} & +2 \mathrm{R}\left\{\sum_{k=1}^{p} a_{p}^{*}[k] \mathrm{E}\{x[n] x[n-k]\}\right\} \\
& +\sum_{k=1}^{p} \sum_{l=1}^{p} a_{p}^{*}[l] a_{p}[k] \mathrm{E}\{x[n-k] x[n-l]\}
\end{aligned}
$$

Normal Equations (Cont.)

- Using the shorthand notation for the correlations, we want to minimize

$$
R_{x}(0)+2 \mathrm{R}\left\{\sum_{k=1}^{p} a_{p}^{*}[k] R_{x}(k)\right\}+\sum_{k=1}^{p} \sum_{l=1}^{p} a_{p}^{*}[l] a_{p}[k] R_{x}(l-k)
$$

Solution to Normal Equations

- The minimization of this function can be obtained by taking the derivative and equating to zero, the resulting equation is

$$
R_{x}(l)=-\sum_{k=1}^{p} a_{p}[k] R_{x}(l-k)
$$

called the normal equations

- Substituting this equation into the error function yields the minimum error

$$
R_{x}(0)+\sum_{k=1}^{p} a_{p}[k] R_{x}(-k)
$$

Backward Linear Prediction

- Now we derive a similar set of equations for the backward linear prediction
- In this case, we want to predict $x[n-p]$ given the later samples $x[n], x[n-1], \ldots, x[n-p+1]$
- We have

$$
\hat{x}[n-p]=-\sum_{k=0}^{p-1} b_{p}[k] x[n-k]
$$

Backward Linear Prediction (Cont.)

- The error can be written as

$$
g_{p}[n]=x[n-p]-\hat{x}[n-p]=x[n-p]+\sum_{k=0}^{p-1} a_{p}[k] x[n-k]
$$

- Combining summation terms and $x[n-p]$ we obtain

$$
g_{p}[n]=\sum_{k=0}^{p} b_{p}[k] x[n-k],
$$

where we have defined $a_{p}[0]=1$

- This backward error filter can similarly be realized using a direct or lattice form

Backward Linear Prediction (Cont.)

- The solutions for the backward linear coefficients $b_{p}[k]$ can similarly be obtained and they are related to the forward linear prediction coefficients:

$$
b_{p}[k]=a_{p}^{*}[p-k]
$$

- Using this relation we can derive a relation between the Z transforms $G_{p}(z)$ and $F_{p}(z)$
- We have

$$
\begin{aligned}
B_{p}(z) & =\sum_{k=0}^{p} b_{p}[k] z^{-k} \\
& =a_{p}^{*}[p-k] z^{-k} \\
& =z^{-p} A_{p}^{*}\left(z^{-1}\right)
\end{aligned}
$$

- These relations allow for a recursive relation between direct-form and lattice-form coefficients

Optimum Reflection Coefficients

- Until now, we considered to minimize the error using a 's and b 's (direct form coefficients)
- We can minimize the forward prediction error using the lattice structure
- For a single stage, there is only one parameter which is the reflection coefficient K
- For a single lattice

$$
f_{m}[n]=f_{m-1}[n]+K_{m} g_{m-1}[n-1]
$$

- Minimizing the error with respect to K, we find the optimum K for the particular stage

$$
K_{m}=\frac{-\mathrm{E}\left\{f_{m-1}[n] g_{m-1}^{*}[n-1]\right\}}{\mathrm{E}\left\{\left|g_{m-1}[n-1]\right|^{2}\right\}}
$$

- Observe that the optimum reflection coefficient is the negative of the cross correlation coefficients between forward and backward errors

Practice Problem: 12.2

- Given a random process $x[n]$ with autocorrelation function $R_{x}[m]$ and the Z-transform of this autocorrelation function

$$
\Gamma_{x}(z)=9 \frac{(z-1 / 3)(z-3)}{(z-.5)(z-2)}
$$

for $|z|$ between 0.5 and 2

- Determine the filter $H(z)$ that produces this random process from white noise, is this filter unique?
- Determine a stable whitening filter for $x[n]$

Solution to Problem 12.2

- Remember output of a linear system with input being white noise is

$$
\sigma_{w}^{2}|H(z)|^{2}=\sigma_{w}^{2}|H(z)|\left|H(z)^{-1}\right|
$$

- Then

$$
H(z) H\left(z^{-1}\right)=\frac{(z-1 / 3)(z-3)}{(z-0.5)(z-2)}
$$

- We can select

$$
H(z)=\frac{z-1 / 3}{z-0.5}
$$

or

$$
H(z)=\frac{z-3}{z-2}
$$

Solution to Problem 12.2 part (b)

- Whitening filter is the inverse of $H(z)=\frac{1}{H(z)}$
- For a stable whitening filter we must have

$$
H(z)=\frac{z-1 / 3}{z-0.5}
$$

and the whitening filter is

$$
H(z)=\frac{z-0.5}{z-1 / 3}
$$

