
'

&

$

%

Outline

• Normal Equations Review

• Augmented Normal Equations

• Fast Methods to Solve Normal Equations

– Levinson Durbin Algorithm

– Schur Algorithm

'

&

$

%

Normal Equations Review

• A method to design linear forward predictor is achieved by minimizing
the energy of the error function

ap = arg minap E{|f(p)|2}
= arg minap

E{fp[n]f∗p [n], }

where

fp[n] = x[n]− x̂[n] = x[n] +
p∑

k=1

ap[k]x[n− k]

or

fp[n] =
p∑

k=0

ap[k]x[n− k],

with ap[0] = 1

'

&

$

%

Normal Equations Review

• The minimum of this cost function can be found by taking the derivative
with respect to a′ps yielding

p∑
k=0

ap[k]Rx(l − k) = 0, l = 1, 2, . . . , p

• This is called the normal equation

• When the solution of this equation is substituted into the definition of
error function, we obtain the minimum error

Ef
p =

p∑
k=1

ap[k]Rx(−k)

'

&

$

%

Augmented Normal Equations

• If we combine the normal equations with the minimum error resulting
from the optimum a′ps, we obtain the augmented normal equations

p∑
k=0

ap[k]Rx(l − k) =

 Ef
p , l = 0

0, l = 1, 2, . . . , p



'

&

$

%

Fast Methods to Solve Normal Equations

• Normal equations are linear equations in a′ps and can be solved easily
given the second order statistics of the signal Rx(τ)

• This requirement actually explains how a future value can be predicted.
We simply know the statistics (related to the likelihood of a certain
value)

• Although the solution is simply the solution to a linear set of equations,
computation can be high when the signal length p is high

• Therefore, fast methods have been proposed to solve linear equations
utilizing the special structure of the autocorrelation function Rx(τ)

• We will study two of these methods

– Levinson-Durbin algorithm

– Schur Algorithm

'

&

$

%

Levinson-Durbin Algorithm

• This is a recursive algorithm that utilizes the toeplitz and symmetry
properties of the autocorrelation function

• Let us write the normal equations in the matrix form:

Γpap = −rx

where ap is the vector of uknown coefficients, and Γp is the matrix of the
autocorrelation Rx, rx is a vector obtained from elements of Rx(.)

Γp =


Rx(0) Rx(−1) ... Rx(1− p)

Rx(1) Rx(0) ... Rx(2− p)

...

Rx(p− 1) Rx(p− 2) ... Rx(0)



'

&

$

%

Levinson-Durbin Algorithm (Cont.)

• Let us rewrite Γp using the symmetry property of the autocorrelation
function Rx(τ) = R∗

x(−τ)

Γp =


Rx(0) R∗

x(1) ... R∗
x(p− 1)

Rx(1) Rx(0) ... R∗
x(p− 2)

...

Rx(p− 1) Rx(p− 2) ... Rx(0)


• This matrix is Hermitian: ΓT

p = Γ∗
p and it is toeplitz: Γp(i, j) = Γp(i− j)

• Normally a matrix inversion takes time O(p3), but using these properties
we will be able to solve the system more efficiently

'

&

$

%

Levinson-Durbin Algorithm (Cont.)

• Let us start by calculating a1(1)

a1(1) = −Rx(1)
Rx(0)

with the minimum mean squared error (MMSE)

Ef
1 = Rx(0) + a1(1)Rx(−1)

= Rx(0)(1− |a1(1)|2)

• Now let us calculate the second order predictor coefficients

a2(1)Rx(0) + a2(2)R∗
x(1) = −Rx(1)

a2(1)Rx(1) + a2(2)Rx(0) = −Rx(2)

resulting in the solution

a2(2) = −Rx(2)+a1(1)Rx(1)

Ef
1

a2(1) = a1(1) + a2(2)a∗1(1)

'

&

$

%

Levinson-Durbin Algorithm (Cont.)

• Note that the values a2’s are calculated in terms of the previous step

• Continuing in this manner we can obtain all coefficients

am =



am(1)

am(2)

.

.

.

am(m)


=



am−1

.

.

.

0


+



dm−1

.

.

.

Km


• What are the values of dm’s and Km?

'

&

$

%

Levinson-Durbin Algorithm (Cont.)

• Let us partition Γm as follows

Γm =

 Γm−1 rr∗
m−1

rrT
m−1 Rx(0)

 ,

where rr
m−1 = [Rx(m− 1)Rx(m− 2), . . . , Rx(1)]

• The normal equations can now be written as Γm−1 rr∗
m−1

rrT
m−1 Rx(0)


 am−1

0

 +

 dm−1

Km

 = −

 rm−1

Rx(m)



'

&

$

%

Levinson-Durbin Algorithm

• We have two equations from two rows:

Γm−1am−1 + Γm−1dm−1 + Kmrr∗
m−1 = −rm−1

rrT
m−1am−1 + rrT

m−1dm−1 + KmRx(0) = −Rx[m]

• Solving the first row of this block form yields

dm−1 = −KmΓ−1
m−1r

r∗
m−1

= Kmar∗
m−1 (∗)

where r again denotes reversing of the element order since
Γm−1am−1 = −rm−1.

• Now using second row equation and Eq. (*) we obtain

Km[Rx(0) + rrT
m−1a

∗
m−1] + rT

m−1am−1 = −Rx(m)

'

&

$

%

• Hence, we obtain Km

Km = −
Rx(m) + rrT

m−1am−1

Rx(0) + rrT
m−1a

∗
m−1

'

&

$

%

Levinson-Durbin Algorithm (Cont.)

• We have obtained Km and dm, the whole recursive set of equations are

am(m) = Km = −Rx(m)+rT
m−1am−1

Rx(0)+rT
m−1a∗m−1

am(k) = am−1(k) + Kmar∗
m−1(m− k)

k = 1, . . . ,m− 1

• The Km’s are the reflection coefficients in the lattice structure

'

&

$

%

Levinson-Durbin Algorithm (Cont.)

• The expression for the MMSE is

Ef
m = Rx(0) +

∑m
k=1 am(k)Rx(−k)

= Rx(0) +
∑m

k=1[am−1(k) + am(m)a∗m−1(m− k)]Rx(−k)

= Ef
m−1(1− |Km|2)

• The error is monotonically decreasing, makes sense since as new data
comes in we should have improving performance

• Computational cost: for each stage we have O(m) multiplications
resulting in total 1 + 2 + . . . + p = p(p + 1)/2 that is O(p2) operations

• Regular inversion O(p3) for arbitrary matrix

'

&

$

%

Schur Algorithm

• Consider the following

α0(z) =
Rx(1)z−1 + Rx(2)z−2 + . . . + Rx(p)z−p

Rx(0) + Rx(1)z−1 + Rx(2)z2 + . . . + Rx(p)z−p

and the following that will be calculated recursively

αm(z) =
αm−1(z)− αm−1(∞)

z−1[1− α∗
m−1(∞)αm−1(z)]

• Since α0(∞) = 0 we can obtain

α1(z) = α0(z)/z−1 =
Rx(1) + Rx(2)z−1 + . . . + Rx(p)z−p+1

Rx(0) + Rx(1)z−1 + Rx(2)z2 + . . . + Rx(p)z−p

'

&

$

%

Schur Algorithm (Cont.)

• Now with these definitions, we have α1(∞) = Rx(1)/Rx(0) which is
equal to −K1

• The next step in the recursion

α2(∞) =
Rx(2) + K1Rx(1)
Rx(0)(1− |K1|2)

which is equal to K2

• That is we have the relation αm(∞) = −Km

• Calculating αm(∞)’s is equivalent to solving normal equations

'

&

$

%

Schur Algorithm (Cont.)

• Let us write

αm(z) =
Pm(z)
Qm(z)

where
P0(z) = Rx(1)z−1 + Rx(2)z−2 + . . . + Rx(p)z−p

Q0(z) = Rx(0) + Rx(1)z−1 + Rx(2)z−2 + . . . + Rx(p)z−p

• Consider the following block equations for recursive creation of Pm(z)
and Qm(z) Pm(z)

Qm(z)

 =

 1 Km−1

K∗
m−1z

−1 z−1

 Pm−1(z)

Qm−1(z)



'

&

$

%

Schur Algorithm (Cont.)

• Let us check the recursive relation

P1(z) = P0(z)

Q1(z) = z−1Q0(z)

• Next step

P2(z) = P1(z) + K1Q1(z)

= [Rx(2) + K1Q1(z)

Q2(z) = z−1[Q1(z) + K∗
1P1(z)]

• We can see that P2(z)/Q2(z) is equivalent to the definition of α2(z)

• Recursive applications show that this is true for all m

'

&

$

%

Schur Algorithm (Cont.)

• The Steps of Schur Algorithm can systematically performed as the
following

– Create a matrix

G =

 0 Rx(1) rx(2) ... Rx(p)

Rx(0) Rx(1) rx(2) ... Rx(p)


– Shift second row to right once with padding zeros for the new

elements, the negative ratio of the second column is the reflection
coefficient

'

&

$

%

Schur Algorithm (Cont.)

• And then

– Multiply this shifted matrix by 1 Km

K∗
m 1


for (m = 1, 2, . . .)

– Shift to right by once again, the negative ratio of the second column
is K2

– Continue untill all K’s are calculated

