Outline

- Normal Equations Review
- Augmented Normal Equations
- Fast Methods to Solve Normal Equations
- Levinson Durbin Algorithm
- Schur Algorithm

Normal Equations Review

- A method to design linear forward predictor is achieved by minimizing the energy of the error function

$$
\begin{aligned}
a_{p} & =\arg \min _{a_{p}} E\left\{|f(p)|^{2}\right\} \\
& =\arg \min _{a_{p}} E\left\{f_{p}[n] f_{p}^{*}[n],\right\}
\end{aligned}
$$

where

$$
f_{p}[n]=x[n]-\hat{x}[n]=x[n]+\sum_{k=1}^{p} a_{p}[k] x[n-k]
$$

or

$$
f_{p}[n]=\sum_{k=0}^{p} a_{p}[k] x[n-k],
$$

with $a_{p}[0]=1$

Normal Equations Review

- The minimum of this cost function can be found by taking the derivative with respect to $a_{p}^{\prime} s$ yielding

$$
\sum_{k=0}^{p} a_{p}[k] R_{x}(l-k)=0, \quad l=1,2, \ldots, p
$$

- This is called the normal equation
- When the solution of this equation is substituted into the definition of error function, we obtain the minimum error

$$
E_{p}^{f}=\sum_{k=1}^{p} a_{p}[k] R_{x}(-k)
$$

Augmented Normal Equations

- If we combine the normal equations with the minimum error resulting from the optimum $a_{p}^{\prime} s$, we obtain the augmented normal equations

$$
\sum_{k=0}^{p} a_{p}[k] R_{x}(l-k)=\left\{\begin{array}{ll}
E_{p}^{f}, & l=0 \\
0, & l=1,2, \ldots, p
\end{array}\right\}
$$

Fast Methods to Solve Normal Equations

- Normal equations are linear equations in $a_{p}^{\prime} s$ and can be solved easily given the second order statistics of the signal $R_{x}(\tau)$
- This requirement actually explains how a future value can be predicted. We simply know the statistics (related to the likelihood of a certain value)
- Although the solution is simply the solution to a linear set of equations, computation can be high when the signal length p is high
- Therefore, fast methods have been proposed to solve linear equations utilizing the special structure of the autocorrelation function $R_{x}(\tau)$
- We will study two of these methods
- Levinson-Durbin algorithm
- Schur Algorithm

Levinson-Durbin Algorithm

- This is a recursive algorithm that utilizes the toeplitz and symmetry properties of the autocorrelation function
- Let us write the normal equations in the matrix form:

$$
\Gamma_{p} \boldsymbol{a}_{p}=-\boldsymbol{r}_{x}
$$

where \boldsymbol{a}_{p} is the vector of uknown coefficients, and Γ_{p} is the matrix of the autocorrelation $R_{x}, \boldsymbol{r}_{x}$ is a vector obtained from elements of $R_{x}($.

$$
\Gamma_{p}=\left[\begin{array}{cccc}
R_{x}(0) & R_{x}(-1) & \ldots & R_{x}(1-p) \\
R_{x}(1) & R_{x}(0) & \ldots & R_{x}(2-p) \\
\ldots & \ldots & \ldots & \ldots \\
R_{x}(p-1) & R_{x}(p-2) & \ldots & R_{x}(0)
\end{array}\right]
$$

Levinson-Durbin Algorithm (Cont.)

- Let us rewrite Γ_{p} using the symmetry property of the autocorrelation function $R_{x}(\tau)=R_{x}^{*}(-\tau)$

$$
\Gamma_{p}=\left[\begin{array}{cccc}
R_{x}(0) & R_{x}^{*}(1) & \ldots & R_{x}^{*}(p-1) \\
R_{x}(1) & R_{x}(0) & \ldots & R_{x}^{*}(p-2) \\
\ldots & \ldots & \ldots & \ldots \\
R_{x}(p-1) & R_{x}(p-2) & \ldots & R_{x}(0)
\end{array}\right]
$$

- This matrix is Hermitian: $\Gamma_{p}^{\mathrm{T}}=\Gamma_{p}^{*}$ and it is toeplitz: $\Gamma_{p}(i, j)=\Gamma_{p}(i-j)$
- Normally a matrix inversion takes time $O\left(p^{3}\right)$, but using these properties we will be able to solve the system more efficiently

Levinson-Durbin Algorithm (Cont.)

- Let us start by calculating $a_{1}(1)$

$$
a_{1}(1)=-\frac{R_{x}(1)}{R_{x}(0)}
$$

with the minimum mean squared error (MMSE)

$$
\begin{aligned}
E_{1}^{f} & =R_{x}(0)+a_{1}(1) R_{x}(-1) \\
& =R_{x}(0)\left(1-\left|a_{1}(1)\right|^{2}\right)
\end{aligned}
$$

- Now let us calculate the second order predictor coefficients

$$
\begin{aligned}
& a_{2}(1) R_{x}(0)+a_{2}(2) R_{x}^{*}(1)=-R_{x}(1) \\
& a_{2}(1) R_{x}(1)+a_{2}(2) R_{x}(0)=-R_{x}(2)
\end{aligned}
$$

resulting in the solution

$$
\begin{aligned}
& a_{2}(2)=-\frac{R_{x}(2)+a_{1}(1) R_{x}(1)}{E_{1}^{f}} \\
& a_{2}(1)=a_{1}(1)+a_{2}(2) a_{1}^{*}(1)
\end{aligned}
$$

Levinson-Durbin Algorithm (Cont.)

- Note that the values a_{2} 's are calculated in terms of the previous step
- Continuing in this manner we can obtain all coefficients

$$
\boldsymbol{a}_{m}=\left[\begin{array}{c}
a_{m}(1) \\
a_{m}(2) \\
\cdot \\
\cdot \\
\cdot \\
a_{m}(m)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{a}_{m-1} \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right]+\left[\begin{array}{c}
\boldsymbol{d}_{m-1} \\
\cdot \\
\cdot \\
\cdot \\
K_{m}
\end{array}\right]
$$

- What are the values of d_{m} 's and K_{m} ?

Levinson-Durbin Algorithm (Cont.)

- Let us partition Γ_{m} as follows

$$
\Gamma_{m}=\left[\begin{array}{ll}
\Gamma_{m-1} & \boldsymbol{r}_{m-1}^{r *} \\
\boldsymbol{r}_{m-1}^{\mathrm{rT}} & R_{x}(0)
\end{array}\right],
$$

where $\boldsymbol{r}_{m-1}^{r}=\left[R_{x}(m-1) R_{x}(m-2), \ldots, R_{x}(1)\right]$

- The normal equations can now be written as

$$
\left[\begin{array}{cc}
\Gamma_{m-1} & \boldsymbol{r}_{m-1}^{r *} \\
\boldsymbol{r}_{m-1}^{\mathrm{rT}} & R_{x}(0)
\end{array}\right]\left\{\left[\begin{array}{c}
\boldsymbol{a}_{m-1} \\
0
\end{array}\right]+\left[\begin{array}{c}
\boldsymbol{d}_{m-1} \\
K_{m}
\end{array}\right]\right\}=-\left[\begin{array}{c}
\boldsymbol{r}_{m-1} \\
R_{x}(m)
\end{array}\right]
$$

Levinson-Durbin Algorithm

- We have two equations from two rows:

$$
\begin{aligned}
\Gamma_{m-1} \boldsymbol{a}_{m-1}+\Gamma_{m-1} \boldsymbol{d}_{m-1}+K_{m} \boldsymbol{r}_{m-1}^{r *} & =-\boldsymbol{r}_{m-1} \\
\boldsymbol{r}_{m-1}^{\mathrm{rT}} \boldsymbol{a}_{m-1}+\boldsymbol{r}_{m-1}^{\mathrm{rT}} \boldsymbol{d}_{m-1}+K_{m} R_{x}(0) & =-R_{x}[m]
\end{aligned}
$$

- Solving the first row of this block form yields

$$
\begin{aligned}
\boldsymbol{d}_{m-1} & =-K_{m} \Gamma_{m-1}^{-1} \boldsymbol{r}_{m-1}^{r *} \\
& =K_{m} \boldsymbol{a}_{m-1}^{r *} \quad(*)
\end{aligned}
$$

where r again denotes reversing of the element order since $\Gamma_{m-1} \boldsymbol{a}_{m-1}=-\boldsymbol{r}_{m-1}$.

- Now using second row equation and Eq. (*) we obtain

$$
K_{m}\left[R_{x}(0)+\boldsymbol{r}_{m-1}^{\mathrm{rT}} \boldsymbol{a}_{m-1}^{*}\right]+\boldsymbol{r}_{m-1}^{\mathrm{T}} \boldsymbol{a}_{m-1}=-R_{x}(m)
$$

- Hence, we obtain K_{m}

$$
K_{m}=-\frac{R_{x}(m)+\boldsymbol{r}_{m-1}^{\mathrm{rT}} \boldsymbol{a}_{m-1}}{R_{x}(0)+\boldsymbol{r}_{m-1}^{\mathrm{rT}} \boldsymbol{a}_{m-1}^{*}}
$$

Levinson-Durbin Algorithm (Cont.)

- We have obtained K_{m} and \boldsymbol{d}_{m}, the whole recursive set of equations are

$$
\begin{aligned}
a_{m}(m)= & K_{m}=-\frac{R_{x}(m)+\boldsymbol{r}_{m-1}^{\mathrm{T}} \boldsymbol{a}_{m-1}}{R_{x}(0)+\boldsymbol{r}_{m-1}^{\mathrm{T}} \boldsymbol{a}_{m-1}^{*}} \\
a_{m}(k)= & a_{m-1}(k)+K_{m} a_{m-1}^{r *}(m-k) \\
& k=1, \ldots, m-1
\end{aligned}
$$

- The K_{m} 's are the reflection coefficients in the lattice structure

Levinson-Durbin Algorithm (Cont.)

- The expression for the MMSE is

$$
\begin{aligned}
E_{m}^{f} & =R_{x}(0)+\sum_{k=1}^{m} a_{m}(k) R_{x}(-k) \\
& =R_{x}(0)+\sum_{k=1}^{m}\left[a_{m-1}(k)+a_{m}(m) a_{m-1}^{*}(m-k)\right] R_{x}(-k) \\
& =E_{m-1}^{f}\left(1-\left|K_{m}\right|^{2}\right)
\end{aligned}
$$

- The error is monotonically decreasing, makes sense since as new data comes in we should have improving performance
- Computational cost: for each stage we have $O(m)$ multiplications resulting in total $1+2+\ldots+p=p(p+1) / 2$ that is $O\left(p^{2}\right)$ operations
- Regular inversion $O\left(p^{3}\right)$ for arbitrary matrix

Schur Algorithm

- Consider the following

$$
\alpha_{0}(z)=\frac{R_{x}(1) z^{-1}+R_{x}(2) z^{-2}+\ldots+R_{x}(p) z^{-p}}{R_{x}(0)+R_{x}(1) z^{-1}+R_{x}(2) z^{2}+\ldots+R_{x}(p) z^{-p}}
$$

and the following that will be calculated recursively

$$
\alpha_{m}(z)=\frac{\alpha_{m-1}(z)-\alpha_{m-1}(\infty)}{z^{-1}\left[1-\alpha_{m-1}^{*}(\infty) \alpha_{m-1}(z)\right]}
$$

- Since $\alpha_{0}(\infty)=0$ we can obtain

$$
\alpha_{1}(z)=\alpha_{0}(z) / z^{-1}=\frac{R_{x}(1)+R_{x}(2) z^{-1}+\ldots+R_{x}(p) z^{-p+1}}{R_{x}(0)+R_{x}(1) z^{-1}+R_{x}(2) z^{2}+\ldots+R_{x}(p) z^{-p}}
$$

Schur Algorithm (Cont.)

- Now with these definitions, we have $\alpha_{1}(\infty)=R_{x}(1) / R_{x}(0)$ which is equal to $-K_{1}$
- The next step in the recursion

$$
\alpha_{2}(\infty)=\frac{R_{x}(2)+K_{1} R_{x}(1)}{R_{x}(0)\left(1-\left|K_{1}\right|^{2}\right)}
$$

which is equal to K_{2}

- That is we have the relation $\alpha_{m}(\infty)=-K_{m}$
- Calculating $\alpha_{m}(\infty)$'s is equivalent to solving normal equations

Schur Algorithm (Cont.)

- Let us write

$$
\alpha_{m}(z)=\frac{P_{m}(z)}{Q_{m}(z)}
$$

where

$$
\begin{gathered}
P_{0}(z)=R_{x}(1) z^{-1}+R_{x}(2) z^{-2}+\ldots+R_{x}(p) z^{-p} \\
Q_{0}(z)=R_{x}(0)+R_{x}(1) z^{-1}+R_{x}(2) z^{-2}+\ldots+R_{x}(p) z^{-p}
\end{gathered}
$$

- Consider the following block equations for recursive creation of $P_{m}(z)$ and $Q_{m}(z)$

$$
\left[\begin{array}{c}
P_{m}(z) \\
Q_{m}(z)
\end{array}\right]=\left[\begin{array}{cc}
1 & K_{m-1} \\
K_{m-1}^{*} z^{-1} & z^{-1}
\end{array}\right]\left[\begin{array}{c}
P_{m-1}(z) \\
Q_{m-1}(z)
\end{array}\right]
$$

Schur Algorithm (Cont.)

- Let us check the recursive relation

$$
\begin{gathered}
P_{1}(z)=P_{0}(z) \\
Q_{1}(z)=z^{-1} Q_{0}(z)
\end{gathered}
$$

- Next step

$$
\begin{aligned}
P_{2}(z) & =P_{1}(z)+K_{1} Q_{1}(z) \\
& =\left[R_{x}(2)+K_{1} Q_{1}(z)\right. \\
Q_{2}(z) & =z^{-1}\left[Q_{1}(z)+K_{1}^{*} P_{1}(z)\right]
\end{aligned}
$$

- We can see that $P_{2}(z) / Q_{2}(z)$ is equivalent to the definition of $\alpha_{2}(z)$
- Recursive applications show that this is true for all m

Schur Algorithm (Cont.)

- The Steps of Schur Algorithm can systematically performed as the following
- Create a matrix

$$
G=\left[\begin{array}{ccccc}
0 & R_{x}(1) & r_{x}(2) & \ldots & R_{x}(p) \\
R_{x}(0) & R_{x}(1) & r_{x}(2) & \ldots & R_{x}(p)
\end{array}\right]
$$

- Shift second row to right once with padding zeros for the new elements, the negative ratio of the second column is the reflection coefficient

Schur Algorithm (Cont.)

- And then
- Multiply this shifted matrix by

$$
\left[\begin{array}{cc}
1 & K_{m} \\
K_{m}^{*} & 1
\end{array}\right]
$$

for ($m=1,2, \ldots$)

- Shift to right by once again, the negative ratio of the second column is K_{2}
- Continue untill all K 's are calculated

