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Normal Equations Review

e A method to design linear forward predictor is achieved by minimizing

the energy of the error function

4 = argming, B{|f(p)P}
— argminap E{fp[n]f;[n]a}

where
foln] = z[n] — &n] = z[n] + ) ap[k]z[n — K]
foln] = aplklz[n — K,
k=0
with a,[0] =1
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Normal Equations Review

e The minimum of this cost function can be found by taking the derivative

with respect to a;,s yielding

p

Y aplk]R(1—k) =0, 1=1,2,....p
k=0

e This is called the normal equation

e When the solution of this equation is substituted into the definition of

error function, we obtain the minimum error

E;J; = zp: aplk| Ry (—k)
k=1




Augmented Normal Equations

e If we combine the normal equations with the minimum error resulting

/

»S, we obtain the augmented normal equations

from the optimum a

& El, 1=0
> aplk|Ro(1 k)= "F
k:O O, l:1,2,...7p
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Fast Methods to Solve Normal Equations

/
p

given the second order statistics of the signal R, (7)

Normal equations are linear equations in a, s and can be solved easily

This requirement actually explains how a future value can be predicted.
We simply know the statistics (related to the likelihood of a certain

value)

Although the solution is simply the solution to a linear set of equations,

computation can be high when the signal length p is high

Therefore, fast methods have been proposed to solve linear equations

utilizing the special structure of the autocorrelation function R, (7)

We will study two of these methods
— Levinson-Durbin algorithm

— Schur Algorithm
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Levinson-Durbin Algorithm

e This is a recursive algorithm that utilizes the toeplitz and symmetry

properties of the autocorrelation function

e Let us write the normal equations in the matrix form:
I'ya, = —r,

where a,, is the vector of uknown coefficients, and I';, is the matrix of the

autocorrelation R,, r, is a vector obtained from elements of R,(.)

Rx(()) Rx(_l) Rm(l _p)
I — Rw(l) Ra:(o) Rac(2 o p)
i Rx(p T 1) Rx(p T 2) Rx(o) _
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Levinson-Durbin Algorithm (Cont.)

e Let us rewrite I', using the symmetry property of the autocorrelation

function R,(7) = R:(—7)

'y =

Ri(p—1)
Ri(p—2)
R;(0)

~

o This matrix is Hermitian: I} = I'5 and it is toeplitz: I',(4,5) = (i — j)

e Normally a matrix inversion takes time O(p?), but using these properties

we will be able to solve the system more efficiently

/




/ Levinson-Durbin Algorithm (Cont.)
e Let us start by calculating a;(1)

v

_ Rg(1)
“)="%.0

with the minimum mean squared error (MMSE)

El = R.(0)+ a1 (1)R.(—1)
= Ry (0)(1—lai(1)[?)
e Now let us calculate the second order predictor coefficients

az(1) R, (0) + a2(2)R; (1) = —Re(1)

as(1)R, (1) + a2(2)R.(0) = —R,(2)
resulting in the solution
ax(2) = _R$<2)+aégl”l)Rm(1)
az(1) = ai(1) +a2(2)ai(1)

-
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Levinson-Durbin Algorithm (Cont.)
e Note that the values as’s are calculated in terms of the previous step

e Continuing in this manner we can obtain all coefficients

A (1 : - :
( ) Apm—1 dm—l
A (2)
am — — —|—
0 K,,
Ay () - - - -

e What are the values of d,,,’s and K,,,7

-




-~

Levinson-Durbin Algorithm (Cont.)

e Let us partition I';,, as follows

L'y, = fmo r?';;k_l )
o1 R(0)
where v, = [R,(m — 1)Ry(m — 2),..., Rz(1)]

e The normal equations can now be written as

Fm—l rrm*_l A1 4 dm—l _
rl  R.(0) 0 K,




-~

Levinson-Durbin Algorithm

e We have two equations from two rows:

I'—1am—1 + 1_\'m—ld'm—l =+ Kmrz;k_l = —Tm-1
r'l a1 +7rt d,1+K,R:(0) = —R.[m]

e Solving the first row of this block form yields

_ —1 r*
dpn-1 = — K., 1

- Tk

— Kma’m—l (*)

where r again denotes reversing of the element order since

I'm—1@m—1 = —7Tp—1.
e Now using second row equation and Eq. (*) we obtain

EKpn[R:(0) + 75, _1a), 4] + 7 _1@m 1 = —Ry(m)

m—1

-




e Hence, we obtain K,




Levinson-Durbin Algorithm (Cont.)

e We have obtained K,, and d,,, the whole recursive set of equations are

. R (m)"_rg‘z—la’m—l
Ry (0)+T, _,Qr

am(k) = am-1(k) + Kpagy_i(m — k)
Ek=1,....m—1

K, =

@
3
2

||

e The K,,’s are the reflection coefficients in the lattice structure

- /




Levinson-Durbin Algorithm (Cont.)
The expression for the MMSE is
El, = R.(0)+ Z?l?zl am (k) Ry (—F)
= Ry(0) + X252 [am—1(k) + am(m)ag, _y (m — k)| Ry (—F)
— EvJ;@—l(l — |Km’2)
The error is monotonically decreasing, makes sense since as new data

comes in we should have improving performance

Computational cost: for each stage we have O(m) multiplications
resulting in total 14+ 2+ ...+ p=p(p+ 1)/2 that is O(p?) operations

Regular inversion O(p?) for arbitrary matrix
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Schur Algorithm
e Consider the following

R,(1)z2" '+ R,(2)27 %+ ...+ Ry(p)z~"
R.(0)+ R, (1)z=t+ Ry (2)z2 + ...+ Ry (p)z~P

ap(z) =

and the following that will be calculated recursively

_ op1(2) — ap—1(00)
am(2) = 27 HL — a1 (c0)am—1(2)]

e Since ap(co) = 0 we can obtain

R,(1)+ R, (2)2=+... + Ry (p)z—P™1

ar(z) = ap(z)/27" = Re(0)+ Ry(1)z2 L + Ry(2)22 + ... + Ry(p)z—P




Schur Algorithm (Cont.)

Now with these definitions, we have a;(00) = R;(1)/R,(0) which is
equal to — K4

The next step in the recursion

R.(0)(1 — [K1[?)

o (00) =

which is equal to K
That is we have the relation a,,(c0) = —K,,

Calculating a,,,(00)’s is equivalent to solving normal equations
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Schur Algorithm (Cont.)

e Let us write

where

Py(z) = Rg,;(l)z_1 -+ Rx(2)z_2 + ...+ Ry(p)z7?
Qo(2) = Ry (0) + Ry (1)2™" + Ra(2)27 + ...+ Ro(p)2 ™"

e Consider the following block equations for recursive creation of P,,(2)

and Qi (2)




Schur Algorithm (Cont.)

Let us check the recursive relation
Pi(z) = Po(2)

Q1(z) = 27 'Qo(2)

Next step
Py(z) = Pi(z) + K1Q:1(2)
= [Rs(2) + K1Q1(2)
Q2(2) = 27'Q1(2) + K{Pi(2)]

We can see that Py (2)/Q2(z) is equivalent to the definition of as(2)

Recursive applications show that this is true for all m
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Schur Algorithm (Cont.)

e The Steps of Schur Algorithm can systematically performed as the

following

— Create a matrix

G:

— Shift second row to right once with padding zeros for the new
elements, the negative ratio of the second column is the reflection
coeflicient
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Schur Algorithm (Cont.)

e And then
— Multiply this shifted matrix by

1 K,
K 1

for (m=1,2,...)

— Shift to right by once again, the negative ratio of the second column

18 K2

— Continue untill all K’s are calculated

/




