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Review

e Forward Prediction: finding a guess of z|[n| based on

zln—1],z[n —2|,...,x[n — p|

e The estimate can be written as a linear combination of past values

#[n] ==Y aplklz[n — k]

p
k=1

e The optimum solution is the one that minimizes the mean squared error

between the true and estimated value. We call this the error function

fpln]




Review (Cont.)

e This relation is a linear filtering operation, so we can write everything in
the z-domain and implement the filter with any of the block structures

that we learned earlier

e However lattice structure has a special property that the new lattice do

not change the coefficients of previous lattices
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Review (Cont.)

e The optimum linear predictor can be obtained by minimizing the cost

function

ap[n] ap[n]

Qopt|N] = arg min E {Z fp[n]|2} — arg min E {f;';fp}

n=1

e This minimum can be obtained by taking the derivative and equating to

zero resulting in

> ay[k]R [l — k] =0 [=1,2,....p

p
k=0

e These equations are called the Normal Equations
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Review (Cont.)

The normal equations are linear equations that can be solved with any

method of matrix inversion

However it is possible to solve normal equations more efficiently by using
the fact that the autocorrelation matrix is Hermitian Conjugate and

Toeplitz
Two such efficient methods are Levinson-Durbin and Schur Algorithm

Both use some sort of block decomposition of the autocorrelation matrix

and result in recursive calculation of the optimum a,’s
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Properties of Linear Prediction-Error Filters
e Minimum-phase — all zeros inside the unit circle
e Maximum-phase — all zeros outside the unit circle

e Remember forward linear predictor-error filter

with z transform

Ap(2) = 3 agln]

e We will show that this filter is minimum phase, that is has all zeros

inside the unit circle using induction
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Properties of Linear Prediction-Error Filters (Cont.)

e Let us start with 1, we have
Al(Z) =1 + Klz_l
and the zero is — K

e K is a reflection coefficient and less than 1

e Now second step of proof by induction: assume that the zeros are all
inside the unit circle for p — 1. We will show that, then, the zeros are

inside the unit circle for p

e The iterative construction of A(z) is
Ay(2) = Ay 1(2) + Ky P A7 (1/2)

for the p step linear prediction
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\ the proof by induction

p_

—1

—1

Ky

e Let us find the zero’s of this function
_ P p—1(1/2)

K,

o Let us use A,—1(2) =1I1;(z — 2;)

1(1/2)

e The zeros for p are now the solutions to

pILil(z/]2%) — 2]

and

Ap—1 (2)

IL[(z/|2*) = 2]

e This function has a magnitude larger than 1, when |z| is larger than 1,

with |z;| < 1 (coming from previous step

e Since its magnitude is K, it cannot be larger than 1, and this concludes

IL; (2 — 2;)
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Properties of Linear Prediction-Error Filters (Cont.)

e Now let us have a look at the backward prediction-error filter

e We know that
By(z) = Z_pA;(Z_l)

e Since A,(z) has zeros all inside unit circle, B, (z) has zeros all outside

unit circle

e Backward linear prediction-error filter is maximum phase
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Wiener Filters: Introduction

e Now we are considering the problem of estimating a signal in the

presence of noise
e In a lot of cases additive noise model is used
z[n] = s[n] + w|n],

where x[n] is the measured signal, s[n| is the desired signal, and w[n] is

the conteminating noise

e Now, let us filter the measurement x[n]

ylnl = Hiz(n;

- /




-

Wiener Filters: Introduction (Cont.)

Depending on the application we want different y[n|’s

In general we have

yln] = s[n + D]

D = 0 corresponds to usual filtering, the only goal is to get rid of the

noise

D > 0 corresponds to prediction, we are trying to reach a guess of future

values
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