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Wiener Filters: Introduction

• Now we are considering the problem of estimating a signal in the
presence of noise

• In a lot of cases additive noise model is used

x[n] = s[n] + w[n],

where x[n] is the measured signal, s[n] is the desired signal, and w[n] is
the conteminating noise

• Let us filter the measurement x[n]

y[n] = H{x[n]}
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Wiener Filters: Introduction (Cont.)

• Depending on the application we want different y[n]’s

• In general we have
y[n] = s[n + D]

• D = 0 corresponds to usual filtering, the only goal is to get rid of the
noise

• D > 0 corresponds to prediction, we are trying to reach a guess of future
values
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Wiener Filters: Introduction (Cont.)

• We use minimum mean-squared error as the optimality criterion

• Assume that all random signals involved are zero mean and wide sense
stationary
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FIR Wiener Filter

• We restrict the optimum linear filter to be FIR

• Then the filtered signal is

y[n] =
M−1∑
k=0

h[k]x[n− k]

• Our criterion: minimum mean-squared error (MMSE)

hopt = arg min
h

E{|d[n]−
M−1∑
k=0

h[k]x[n− k]|2}

• Taking the derivative with respect to h and equating to zero we obtain

M−1∑
k=0

h[k]Rx[l − k] = Rdx[l] l = 0, 1, . . . ,M − 1

• A generalized version of normal equations



'

&

$

%

FIR Wiener Filter (Cont.)

• We can write these equations in matrix form

ΓMh = rd

resulting in the solution
hopt = Γ−1

M rd

• The resulting MMSE can be found by substituting this optimum filter in
the error expression

• Consider the expression for the MMSE

εM = E{|d[n]−
∑M−1

k=0 h[k]x[n− k]|2}
= E{|d[n]|2 +

∑M−1
k=0

∑M−1
k′=0 h[k]h[k′]∗x[n− k]x∗[n− k′]

−
∑M−1

k=0 d[n]h∗[k]x∗[n− k]

−
∑M−1

k=0 d∗[n]h[k]x[n− k]}
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FIR Wiener Filter (Cont.)

• But we have the following equality for optimum h

M−1∑
k=0

h[k]Rx[l − k] = Rdx[l]

• Substituting this expression we obtain

MMSEM = σ2
d −

M−1∑
k=0

hopt[k]R∗
dx[k]

• Substituting hopt = Γ−1
M rd we obtain

MMSEM = σ2
d − rH

d Γ−1
M rd
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FIR Wiener Filter (Cont.)

• Filtering noise: we have x[n] = s[n] + w[n] and d[n] = s[n]

• We can also assume that the signal s[n] and noise w[n] are independent

Rx[k] = Rs[k] + Rw[k]

Rdx[k] = Rx[k]

• Substituting these normal equations become

M−1∑
k=0

h[k]{Rs[l − k] + Rw[l − k]} = Rs[l]
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FIR Wiener Filter (Cont.)

• Prediction: we have
d[n] = s[n + D]

Rdx[k] = Rs[l + D]

• The normal equations become

M−1∑
k=0

h[k]{Rs[l − k] + Rw[l − k]} = Rs[l + D]
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Orthogonality Principle

• Remember the normal equations

M−1∑
k=0

h[k]Rx[l − k] = Rdx[l] l = 0, 1, . . . ,M − 1

• Rearranging terms

Rdx[l]−
M−1∑
k=0

h[k]Rx[l − k] = 0

• This can be written as

E{e[n]x∗[n− l]} = 0

where

e[n] = d[n]−
M−1∑
k=0

h[k]x[n− k]

e[n] = d[n]− d̂[n]
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Orthogonality Princple

• Orthogonality principle is best explained graphically
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Causal IIR Wiener Filter

• We now allow the filter to have infinite length

y[n] =
∞∑

k=0

h[k]x[n− k]

• All steps are similar except the summation runs to ∞ leading to normal
equations

∞∑
k=0

h[k]Rx[l − k] = Rdx[l] l ≥ 0

• The MMSE for the optimum filter coefficients is

MMSEM = σ2
d − rH

d Γ−1
M rd
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Causal IIR Wiener Filter (Cont.)

• We cannot use matrix inversion to solve these normal equations since
they are of infinite length

• We cannot directly use z-transform neither because the equations are for
l > 0

• Remember we had this half-infinite summation problem in innovations
representation, we will use a similar trick

• The optimum filter h is applied to x, but x can be obtained from white
noise with innovations representation, and the inverse of this produces
white noise from x
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Causal IIR Wiener Filter (Cont.)

• Therefore we can decompose h into two parts: whitening filter and
optimum filter

x[n] → H → y[n]

x[n] → Whitening → i[n] → Q → y[n]

• We now have

y[n] =
∞∑

k=0

q[k]i[n− k]

producing
∞∑

k=0

q[k]Ri[l − k] = Rdi[l] l ≤ 0

• Using the fact that i is white noise

q[l] =
Rdi[l]
Ri[0]

=
Rdi[l]
σ2

i
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Causal IIR Wiener Filter (Cont.)

• To calculate the z-transform of h let us calculate first the z-transform of
q and then the z-transform of whitening filter. Product of two will give
the z-transform of h

• The z-transform of q

Q(z) =
∑∞

k=0 q[k]z−k

= 1
σ2

i

∑∞
k=0 Rdi[k]z−k

• This is the right sided z-transform of Rdi

[Γdi(z)]+ =
∞∑

k=0

Rdi[k]z−k

• We can calculate this as follows: start with the whitening filter

i[n] =
∞∑

k=0

v[k]x[n− k]
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Causal IIR Wiener Filter (Cont.)

• We have

Rdi[k] = E{d[n]i∗[n− k]}
=

∑∞
m=0 v[m]E{d[n]x∗[n−m− k]}

=
∑∞

m=0 v[m]Rdx[k + m]

• Substituting this into definition of z-transform

Γdi(z) =
∞∑

k=−∞

{
∞∑

m=0

v[m]Rdx[k + m]}z−k

• Interchanging order of summations

Γdi(z) =
∞∑

m=0

v[m]
∞∑

k=−∞

Rdx[k + m]z−k
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Causal IIR Wiener Filter (Cont.)

• Change of variable k′ = k + m

Γdi(z) =
∑∞

m=0 v[m]zm
∑∞

k′=−∞ Rdx[k′]z−k′

= V (z−1)Γdx(z)

• Finally combining with whitening filter

Hopt(z) = Q(z)V (z)

where

Q(z) =
1
σ2

i

[
V (z−1)Γdx(z)

]
+
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Non-causal IIR Wiener Filter

• We now allow the filter to multiply future values as well

y[n] =
∞∑

k=−∞

h[k]x[n− k]

• All steps are similar except the summation runs to ∞ leading to normal
equations

∞∑
k=−∞

h[k]Rx[l − k] = Rdx[l] lεZ

• We can use z-transform directly in this case

H(z) =
Γdx(z)
Γxx(z)


