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Wiener Filters: Introduction

e Now we are considering the problem of estimating a signal in the

presence of noise
e In a lot of cases additive noise model is used
z[n] = s[n] + w|n],

where x[n] is the measured signal, s[n| is the desired signal, and w[n] is

the conteminating noise

e Let us filter the measurement x|n|

ylnl = Hizn;
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Wiener Filters: Introduction (Cont.)

Depending on the application we want different y[n|’s

In general we have

yln] = s[n + D]

D = 0 corresponds to usual filtering, the only goal is to get rid of the

noise

D > 0 corresponds to prediction, we are trying to reach a guess of future

values
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Wiener Filters: Introduction (Cont.)

e We use minimum mean-squared error as the optimality criterion

e Assume that all random signals involved are zero mean and wide sense
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y(n) _ ( ) o)

Figure 12.7.1 Model for linear estimation problem.




/ FIR Wiener Filter

e We restrict the optimum linear filter to be FIR

e Then the filtered signal is

- hlk)xn —

e Our criterion: minimum mean-squared error (MMSE)

hopt = arg mm E{|d[n] Z hlk k]1%Y
e Taking the derivative with respect to h and equating to zero we obtain

Zh = Rge[l] 1=0,1,...,.M—1

\o A generalized version of normal equations
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FIR Wiener Filter (Cont.)

e We can write these equations in matrix form
FMh = T4
resulting in the solution
hopt = F&l’r‘d

e The resulting MMSE can be found by substituting this optimum filter in
the error expression

e Consider the expression for the MMSE

ev = E{ldn] — 35" hlklzn — K[*}
= B{ldn? + Yo" Yo AlKIRE ) xn — kla*[n — K]
— Sl )t kot [ — K]
— Sl dr[n]hlk)zln — K]}
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FIR Wiener Filter (Cont.)

e But we have the following equality for optimum h

e Substituting this expression we obtain
MMSE,; = 02 — Z hopt [k RS, [k

e Substituting Ay = F]T;rd we obtain

MMSEM:O'd—’rdF T4
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FIR Wiener Filter (Cont.)
e Filtering noise: we have z|n| = s[n| + w[n| and d|n| = s[n|
e We can also assume that the signal s|n| and noise w|n| are independent
Ry[k] = Rs[k] + Ru []
Raz k] = Ro[k]

e Substituting these normal equations become

S BE{RA — K]+ Rull — ]} = RylI
k=0
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FIR Wiener Filter (Cont.)

e Prediction: we have
d[n] = s[n + D]

Rg.[k] = Rs[l + D]

e The normal equations become

Z_ hK|{R[l — k] + Ru[l — K]} = Ry[l + D]
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Orthogonality Principle

e Remember the normal equations

Zh = Ra.|l] 1=0,1,...,

e Rearranging terms

Rz |l] — Z hlE| Rl — k| =0

e This can be written as

where
e[n] = d[n] — ) h[k]z[n — K]
e[n] = d[n] — d[n]

M -1
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Orthogonality Princple

e Orthogonality principle is best explained graphically

A

d(n)
]

\e(”l)

=h(O)x(l)

h(1)x(2)

= x(1)

x(2)

Figure 12.7.2 Geometric interpretation of linear MSE problem.
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Causal IIR Wiener Filter

e We now allow the filter to have infinite length

=) hlklz[n —

k=0

e All steps are similar except the summation runs to oo leading to normal

equations
Z hlk = R[] 1>0

e The MMSE for the optimum filter coefficients is

MMSEM:O-d—rdF T‘d
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Causal IIR Wiener Filter (Cont.)

We cannot use matrix inversion to solve these normal equations since
they are of infinite length

We cannot directly use z-transform neither because the equations are for
[ >0

Remember we had this half-infinite summation problem in innovations

representation, we will use a similar trick

The optimum filter A is applied to x, but x can be obtained from white
noise with innovations representation, and the inverse of this produces

white noise from x

/




/ Causal ITR Wiener Filter (Cont.)

e Therefore we can decompose h into two parts: whitening filter and
optimum filter

zln] — H — y[n
x[n] — Whitening — i[n] — Q — y[n]

e We now have

= qlkli[n —

k=0
producing

Zq =Rgll] 1<0

e Using the fact that ¢ is white noise

dll = =

-
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Causal ITR Wiener Filter (Cont.) \

To calculate the z-transform of h let us calculate first the z-transform of

g and then the z-transform of whitening filter. Product of two will give

the z-transform of h

The z-transform of q

Q(z) =

This is the right sided z-transform of Rgy;

Fdz

We can calculate this as follows: start with the whitening filter

ZZO:() q[k]z_k
0_13 > o Rai [k)z—"

—|— —ZRdz
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Causal ITR Wiener Filter (Cont.)

e We have
Ryi[k] = E{d[n]i*[n — K}
= > =0 v[mIE{d[n]z*[n —m — K}
= > = _,v[m]Raxz[k + m]

e Substituting this into definition of z-transform

Fdz S‘ {Y?} Rda: k"’m]} "

k=—occ m=0

e Interchanging order of summations

Fdi(z):Z’U Z Rz |k +m]z™"
m=0

k=—o00

-
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Causal ITR Wiener Filter (Cont.)
e Change of variable k' = k +m

Lai(2) = Yom_gv[mlz™ Y p__ o Raalk/]27%
= V(274 (2)

e Finally combining with whitening filter

where
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Non-causal IIR Wiener Filter

e We now allow the filter to multiply future values as well

o0

yln) = > hlklzln — K

k=—o00

o All steps are similar except the summation runs to oo leading to normal

equations
@)

> h[k]Ry[l — k] = Rao[l]  leZ

k=—o0

e We can use z-transform directly in this case

_ Fdw (Z)
[2z(2)
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H(z)




