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Adaptive FIR Filters: General Form

• All of the applications of adaptive FIR filters result in the general form
of equations

M−1∑
k=0

h[k]Rx[l − k] = Rdx[l + D] l = 0, 1, . . . ,M − 1

• The correlation sequences are not known apriori, so they are estimated
from the measured data

• Hence, longer data results in better estimates of correlations, and better
estimates of filter coefficients
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Adaptive FIR Filters: General Form (Cont.)

• We also have time-varying random signals now, that is the filter
coefficients will be also time-varying

• Time-varying coefficients can be obtained either by sample by sample
update, or block by block update

• We consider sample by sample updates in this course

• Sample by sample updates can be obtained in two ways

– Least mean square algorithm (LMS)

– Recursive least squares algorithm (RLS)
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LMS Algorithm

• Have a look at the general form of adaptive filters

M−1∑
k=0

h[k]Rx[l − k] = Rdx[l + D] l = 0, 1, . . . ,M − 1

• This has the same form as in Wiener filters (except the correlations are
not known, but estimated. Hence the solution is

hopt = Γ−1
M rd

where ΓM is the matrix with elements from Rxx and rd is the vector
elements from Rdx
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LMS Algorithm (Cont.)

• We also know that the minimum MSE is

EM,min = σ2
d − rH

d Γ−1
M rd

• These optimum coefficients can be obtained by matrix inversion or some
sort of fast algorithm such as Levinson-Durbin

• But these require that estimates of correlations are obtained beforehand

• Another method is to obtain the solutions iteratively using a gradient
search
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Steepest Descent

• A general method to find the minimum of a cost function

• Assume that we want to minimize a cost function C(x)

• A local minimum can be found by going into the direction of negative
gradient



'

&

$

%

LMS Algorithm: Steepest Descent

• Recursive calculation of the optimum filter coefficients are in the form

hM [n + 1] = hM [n] +
1
2
∆[n]S[n]

• Here, S[n] is a direction vector, that will take us closer to the solution
and ∆n is a step size towards that direction

• A simple method of finding minimum is to use the negative of the
gradient as the search direction

S[n] = −g[n] = − dEM [n]

dhM [n]

= −2[ΓMhM [n] − rd]

• Then using this search direction, the update equation becomes

hM [n + 1] = hM [n] − ∆[n][ΓMhM [n] − rd]

= hM [n]{I − ∆[n]ΓM ]} + ∆[n]rd
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LMS Algorithm: Other Methods

• Steepest descent method is slow to converge

• So other gradient-based (but more complex than steepest descent) might
be employed

• Such methods could include e.g. conjugate gradient algorithm
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LMS Algorithm: Estimation of Correlations

• The steepest descent update equation assumes that ΓM and rd are
known

• We need to estimate them if they are not known

• Let us have a look at the gradient expression

g[n] = 2[ΓMhM [n] − rd]

• Considering the definitions of ΓM and r we have

g[n] = −2E{e[n]X∗
M [n]}

where XM [n] is the vector with elements x[n − l]
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LMS Algorithm: Estimation of Correlations

• Although we do not know this expression exactly (ΓM and rd uknown)
we can obtain an unbised estimate of it

ĝ[n] = −2e[n]X∗
M [n]

• Substituting this expression into the steepest descent we obtain

hM [n + 1] = hM [n] + ∆[n]e[n]X∗
M [n]

• If we use a fixed step size we obtain

hM [n + 1] = hM [n] + ∆e[n]X∗
M [n]
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LMS Algorithm: Variations

• If we use more than one sample to change the coefficients, we can obtain
a better estimate of the gradient

¯̂g[nK] = − 2
K

K−1∑
k=0

e[nK + k]x∗M [nK + k]

• The filter coefficients are updated every Kth iteration

hM [(n + 1)K] = hM [nK] − 1
2
∆¯̂g[nK]

• Since K samples are used, the noise is reduced

• Another method to reduce noise in the estimate of the gradient is to use
a low pass filter before using the gradient in the update equation

• Variable step size can be used in case the data has a wide dynamic range

hM [n + 1] = hM [n] +
∆

||XM [n]||2
e[n]X∗

M [n]
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Properties of the LMS Algorithm

• Convergence and stability

• Noise properties
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Properties of the LMS Algorithm: Convergence

• The expected value of the update equation gives

E{hM [n]} = {I − ∆Γm}E{hM [n]} + ∆rd

• In block form we have
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Properties of the LMS Algorithm: Convergence and
Stability

• Let us decouple these difference equations by using diagonalization

ΓM = UΛUH

• Substituting we have

ho
M [n + 1] = (I − ∆Λ)ho

M [n]

• The stability of the solution to these equations are obviously determined
by the step size ∆

• Since equations are now decoupled let us have a look at one of them

ho[k, n] = c(1 − ∆λk)nu[n]
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Properties of the LMS Algorithm: Convergence and
Stability (Cont.)

• We should have
|1 − λk| < 1

or

0 < ∆ <
2
λk

• Generalizing to all k’s we should have

0 < ∆ <
2

λmax
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Properties of the LMS Algorithm: Noise Properties

• The error in adaptive filters are larger than the MSE in general because
we do not have access to true correlation functions, but just use
estimates

• Total MSE is

ET [n] = EM,min + EM,excess

= EM,min + (hM [n] − hopt)TΓM (hM [n] − hopt)∗

• Under certain approximations, the expression for the excess noise can be
calculated as

EM,excess = ∆2EM,min

M−1∑
k=0

λ2
k

1 − (1 − ∆λk)2

• Assuming that we select a small step size so that ∆λk << 1 we have

EM,excess =
1
2
∆EM,min

M−1∑
k=0

λk


