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Adaptive FIR Filters: General Form

All of the applications of adaptive FIR filters result in the general form

of equations
Zh = Ryz[l+D] 1=0,1,...,M—1

The correlation sequences are not known apriori, so they are estimated

from the measured data

Hence, longer data results in better estimates of correlations, and better
estimates of filter coeflicients
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Adaptive FIR Filters: General Form (Cont.)

e We also have time-varying random signals now, that is the filter
coefficients will be also time-varying

e Time-varying coefficients can be obtained either by sample by sample
update, or block by block update

e We consider sample by sample updates in this course

e Sample by sample updates can be obtained in two ways
— Least mean square algorithm (LMS)

— Recursive least squares algorithm (RLS)

-




4 N

LMS Algorithm

e Have a look at the general form of adaptive filters
Zh = Ryz[l+D] 1=0,1,...,M—1

e This has the same form as in Wiener filters (except the correlations are

not known, but estimated. Hence the solution is
hopt = F]T;’r'd

where ' 1s the matrix with elements from R., and r4 is the vector

elements from R4,
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LMS Algorithm (Cont.)

We also know that the minimum MSE is

2 Hp—1
gM,min = 04q — Ty F]\4 Ta

These optimum coeflicients can be obtained by matrix inversion or some

sort of fast algorithm such as Levinson-Durbin

But these require that estimates of correlations are obtained beforehand

Another method is to obtain the solutions iteratively using a gradient
search
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Steepest Descent
e A general method to find the minimum of a cost function
e Assume that we want to minimize a cost function C(x)

e A local minimum can be found by going into the direction of negative

gradient
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LMS Algorithm: Steepest Descent

Recursive calculation of the optimum filter coefficients are in the form

hasln + 1] = hayln] + %A[n]sm

Here, S|n| is a direction vector, that will take us closer to the solution

and A,, is a step size towards that direction

A simple method of finding minimum is to use the negative of the

gradient as the search direction

S[n|

Then using this search direction, the update equation becomes

hM[n—|—1] =

Emn
= —ygln]= _th[[n]]

= =2[[phpyn] — ry]

har[n] = Aln][Carhar(n] — 74l
har[n){I — A[n]Car)} + Aln]ra

~
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LMS Algorithm: Other Methods

e Steepest descent method is slow to converge

e So other gradient-based (but more complex than steepest descent) might

be employed

e Such methods could include e.g. conjugate gradient algorithm
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LMS Algorithm: Estimation of Correlations

e The steepest descent update equation assumes that I'y; and r4 are

known
e We need to estimate them if they are not known

e Let us have a look at the gradient expression
gln] = 2[Tarhr(n] — 74

e Considering the definitions of I'j; and r we have
gln] = —2E{e[n| X} |n]}

where Xs[n] is the vector with elements x[n — (]
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LMS Algorithm: Estimation of Correlations

e Although we do not know this expression exactly (I'j; and 74 uknown)

we can obtain an unbised estimate of it
gln] = —2e[n] Xy, [n]
e Substituting this expression into the steepest descent we obtain
har[n +1] = har[n] + Alnle[n] Xy [n]
o If we use a fixed step size we obtain

hyln + 1] = hpg[n] + Aeln| X 5,[n]
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LMS Algorithm: Variations

a better estimate of the gradient

K-1

_ 2

gInK] = —— > e[nK + klai [nK + k]
k=0

The filter coefficients are updated every Kth iteration
1 -
hyl(n+ 1)K] = hy[nK] — iAg[nK]

Since K samples are used, the noise is reduced

Another method to reduce noise in the estimate of the gradient is to use

a low pass filter before using the gradient in the update equation

Variable step size can be used in case the data has a wide dynamic range
Barln + 1] = hagln] + ————efn) X3 [
e = Ry n e|n n
[ Xar[n]]]? Y

~

e If we use more than one sample to change the coefficients, we can obtain
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Properties of the LMS Algorithm

e Convergence and stability

e Noise properties




4 N

Properties of the LMS Algorithm: Convergence

e The expected value of the update equation gives
E{hy[n|} = {1 — AT, }E{hrp[n]} + Ary

e In block form we have

+ —g(n) Filter hy(n+1)
Ya ——> ; ——-> A C—
B HE) z—1
I‘Ml_lM(n)
BM (n)

Figure 13.2.1 Closed-loop control system representation of recursive Equation
(13.2.34).
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Properties of the LMS Algorithm: Convergence and
Stability

e Let us decouple these difference equations by using diagonalization
Ty =UAU"
e Substituting we have
hi;n+1 = — AAN)hY,[n]

e The stability of the solution to these equations are obviously determined
by the step size A

e Since equations are now decoupled let us have a look at one of them

helk,n] = c(1 — AXg)"uln]
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Properties of the LMS Algorithm: Convergence and
Stability (Cont.)

e We should have

|1—)\k|<1
or
2
0< A< —
Ak

e Generalizing to all k’s we should have

0<AKL

)\max




/ Properties of the LMS Algorithm: Noise Properties \

e The error in adaptive filters are larger than the MSE in general because
we do not have access to true correlation functions, but just use
estimates

e Total MSE is

8T [n] — gM,min + gM,excess

= EMmin + (hyp|n] — hopt)TFM(hM 1] = hopt)”

e Under certain approximations, the expression for the excess noise can be

calculated as
M—1

2
gM,excess = A gM,min E
k=0

A
1— (1 — AXg)?

e Assuming that we select a small step size so that A\ << 1 we have

| _
gM,eXCGSS — §AEM,min Z /\k:
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