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Adaptive FIR Filters: General Form

• All of the applications of adaptive FIR filters result in the general form
of equations

M−1∑
k=0

h[k]Rx[l − k] = Rdx[l + D] l = 0, 1, . . . ,M − 1

• The correlation sequences are not known apriori, so they are estimated
from the measured data

• Hence, longer data results in better estimates of correlations, and better
estimates of filter coefficients



'

&

$

%

LMS Algorithm: Review

• In LMS algorithm, we find the optimum filter coefficients using gradient
based methods

• Gradient based methods are a general class of methods of finding the
minimum of a cost function

• There is only one parameter that we can choose the step size ∆

• There are limits on the step size due to stability requirements

• The convergence can be very slow depending on the eigenvalues of Γ
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RLS Algorithm

• Therefore we can develop more complicated methods than LMS that use
more number of parameters that we can select

• In the RLS algorithm, we have as many number of parameters as the
eigenvalues of Γ

• Algorithm is more complicated (we have to determine M parameters
instead of one), but more flexible resulting in faster convergence
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RLS Algorithm (Cont.)

• Let us define the following vectors

hM [n] =



h[0, n]

h[1, n]

·
·
·

h[M − 1, n]


xM [n] =



x[n]

x[n − 1]

·
·
·

x[n − M + 1]


• Now the problem of finding the optimum filter coefficients is given x

what is h that minimizes the weighted least squares error

EM =
∑n

l=0 wn−l|d[l] − d̂[l, n]|2

=
∑n

l=0 wn−l|d[l] − hT
MxM [l]|2

This is a generalized version of MSE with a weighting factor w

• We can use the weighting filter to put more weight on recent samples
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RLS Algorithm (Cont.)

• Minimizing the weighted least squares error results in the set of
equations

RM [n]hM [n] = DM [n]∑n
l=0 wn−lx∗M [l]xT

M [l]hM [n] =
∑n

l=0 wn−lx∗M [l]d[l]

• We can solve this equations for the unknown filter coefficients

hM [n] = R−1
M [n]DM [n]
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RLS Algorithm (Cont.)

• Now, RM is some sort of estimate of the autocorrelation, but not
exactly. Hence, it is not Toeplitz (we can use available fast algorithms
such as Levinson-Durbin)

• Similarly DM is related to the estimate of Rdx

• Instead of solving this inversion equation from the scratch each time a
new sample arrives, we will try to solve it iteratively

• As each sample arrives, the solution will be based on the previous
solution
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RLS Algorithm (Cont.)

• For recursive inversion of RM we will make use of a matrix identity

R−1
M [n] =

1
w

[
R−1

M [n − 1] −
R−1

M [n − 1]x∗M [n]xT
M [n]R−1

M [n − 1]
w + xTR−1

M [n − 1]x∗M [n]

]
• Let us simplify notation by a few definitions

Pm[n] =
1
w

[
PM [n − 1] − KM [n]xT[n]PM [n − 1]

]
where

KM [n] =
1

w + xTPM [n − 1]x∗M [n]
PM [n − 1]x∗M [n]

and
PM [n] = R−1

M [n]

• Now, let us turn back to calculating the matrix inversion
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RLS Algorithm (Cont.)

• We have
hM [n] = PM [n]DM [n]

• We can calculate DM [n] recursively as

DM [n] = wDM [n − 1] + d[n]x∗M [n]

• Using the matrix inversion lemma we have

hM [n] = 1
w

[
PM [n − 1] − KM [n]xT[n]PM [n − 1]

]
× [wDM [n − 1] + d[n]x∗M [n]]

= PM [n − 1]DM [n − 1] + 1
wd[n]PM [n − 1]x∗M [n]

−KM [n]xT
M [n]PM [n − 1]DM [n − 1]

− 1
wd[n]KM [n]xT[n]PM [n − 1]x∗M [n]

= hM [n − 1] + KM [n]
[
d[n] − xT

M [n]hM [n − 1]
]
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RLS Algorithm (Cont.)

• Let us define
eM [n] = d[n] − xT

MhM [n − 1]

• Then the update equation (recursive solution) becomes

hM [n] = hM [n − 1] + KM [n]eM [n]

• Much more efficient
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RLS Algorithm: Summary

The steps of RLS are as follows

• Computer eM using the optimum coefficients from previous step

eM [n] = d[n] − xT[n]hM [n − 1]

• Compute KM (called Kalman gain filter)

KM [n] =
PM [n − 1]x∗M [n]

w + xT[n]PM [n − 1]x∗M [n]

• Update PM

PM [n] =
1
w

[
PM [n − 1] − KM [n]xT

M [n]PM [n − 1]
]

• Calculate optimum filter coefficient

hM [n] = hM [n − 1] + KM [n]eM [n]

• Note that the each coefficient is updated independently using M free
parameters (elements of KM )
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LDU factorization

• The RLS algorithm involves the calculation of squares of x. This
operation might result in increased round-off errors

• Using LDU decomposition helps to decrease these errors

• For example, let us use LDU decomposition of PM [n]

PM [n] = LM [n]γM [n]LH
M [n]
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LDU factorization (Cont.)

• Substituting this into the update equation of PM in RLS algorithm we
can obtain the following

LM [n]γM [n]LH
M [n]

= 1
w

[
LM [n − 1]L̂M [n − 1]γ̂[n − 1]L̂H

M [n − 1]LH
M [n − 1]

]
• That is the update equations are

LM [n] = LM [n − 1]L̂M [n − 1]

γM [n] =
1
w

γ̂M [n − 1]

• These update equations depend on directly x not the square of it, hence
the error due to rounding is significantly smaller
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Fast RLS Algorithms

• The most time-consuming part of the RLS algorithm is the computation
of KM where matrix multiplications are involved

• Fast RLS algorithms avoid these matrix multiplications by using forward
and backward prediction formulae



'

&

$

%

Properties of RLS Algorithms

• Superior convergence rate, especially important for fast changing signals

• An example of channel equalization
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Properties of RLS Algorithms

• Computationally more complex than LMS

• Direct RLS O(M2)

• Fast RLS around O(M) but still with higher cost than LMS

• Another disadvantage: accumulation of roundoff errors during iterations
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Power Spectrum Estimation: Introduction

• The goal is to estimate the power density spectrum of a signal given a
finite length observation of it

• When the signal is stationary the longer the data the better the estimate
is

• When the signal is non-stationary longer data do not guarantee better
estimates

• For non-stationary case, we must use data of sufficient length that would
result in a reliable estimate, but not too long that would result in
ignoring the time-varying characteristics

• Power spectrum estimation methods can be categorized into two groups

– Non-parametric estimation: no prior model is assumed, the power
density spectrum samples are estimated directly

– Parametric estimation: prior knowledge is used to model the power
density spectrum using a few parameters, these parameters are
estimated that yield a final estimate of power density spectrum


