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The goal is to estimate the power density spectrum of a signal given a

Power Spectrum Estimation: Introduction

finite length observation of it

When the signal is stationary the longer the data the better the estimate

1S

When the signal is non-stationary longer data do not guarantee better

estimates

Power spectrum estimation methods can be categorized into two groups

— Non-parametric estimation: no prior model is assumed, the power

density spectrum samples are estimated directly

— Parametric estimation: prior knowledge is used to model the power
density spectrum using a few parameters, these parameters are

estimated that yield a final estimate of power density spectrum
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Computation of the Energy Density Spectrum

e Remember the definitions of autocorrelation for a deterministic signal
©.@)
R, (r) = / 2% (£)a(t + 7)1
— OO

and the energy density spectrum which is the Fourier transform of the

autocorrelation function

S, (F) = / Ro(r)e 727 tdr

— 00
e Let us consider calculating these from the samples of x(t)

e When there is no aliasing there is a one-to-one relation between the

samples of a signal and the signal itself
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Computation of the Energy Density Spectrum (Cont.)

e For a discrete signal

Ro[k]= > a*[njz[n+ k]
and
Se(f) = Z Rm[k]e_j%kf
k=—o0
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/Computation of the Energy Density Spectrum (Cont.)\

In practice we will have only finite number of samples

This limitation can mathematicall represented by multiplying the
original function with a window function

Assuming we have N samples, the signal that we will be using is

zn], 0<n<N-1

0, otherwise

X(f)=X(N=W(f)= [ X(@)W(f - a)da

This windowing results in errenous frequency components, called the
leakage, where the actual signal frequency content is zero

As in filter design, we can use different windows to reduce leakage in the

price of a drawback such as increasing the width of the main lobe /
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Computation of the Energy Density Spectrum (Cont.)

e Using DFT we can calculate the samples of the spectrum

-

e We have distortions due to windowing

N—1 2

Z j«j[n]e—jQWkn/N

n=0

- /




/ Estimation of Autocorrelation and Power Spectrum of\
Random Signals

e Remember definitions for random signals
R.(t)=Elz* (t)z(t + 7)]

and -
S (F) = / R, (1)e 72 dta
— OO
e Problem: We do not know true autocorrelation, but need to estimate it

from a single realization (what we observe)

Ro(r) = 2—1T0 /_ T Ozt +7)dE (+)

e Assuming ergodicty, we have

A

lim R,(7) = R;(7)

To—o00

e Therefore we will be using Eq. (*) as the estimate of the autocorrelation

\ function /
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

e We obtain an estimate of S, (F) using the time average of the

autocorrelation function

Py (F)

1

1

1

2To

2To

2To

f_TOTO R, (T)e /2™ ETdr

TOTO[ T;O (B (t+7)e—J2ﬂFTdt} dr
5 [ [ dt} =92 FT
EFOTO :L'(t)e_ﬂ“Ftdt|
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

e Now let us turn back to discrete case

e We have the estimate of the autocorrelation function

N—m—1
A 1
Rw[m]:N—M Z z*[nlxln+m], m=0,1,...,N—1
n=0

e Let us have a look at the mean of this estimate

> Efeulefn+m] = Rlm]

n=0

1
- N-—-M

E [Rx [m]}

e Unbiased estimate

e The variance can be shown to limit to zero for large sample size
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

e Although the variance is zero for large IV, it is high for large values of m

given a finite M
e To obtain an estimate with smaller variance, we sacrifice unbiasedness

e (Consider the estimate

Riml =~ Y oblntml (9

m=0

e This estimate is clearly biased but can be shown to have smaller

variance and is preferrable

e Bias which is equal to |m|R,[m]/N vanishes and variance aproaches zero
as IV gets larger

- /
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Estimation of Autocorrelation and Power Spectrum of

Random Signals (Cont.)

e Using Eq. (*) as the estimate of autocorrelation, we obtain the

periodogram

P.(f) = SNZU . Romlei2mim

N N-1 —j27fn 2 _ 1 X 2
N ano w[n]e _Nl (f)|
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

e Let us have a look at the mean of P,(f)

BIP(f)] = B[Sy Relmles2mim]
— YNt LE {Rx [m]} o—j2mfm
= ST v (1= Refmjesenom
e That is the mean of the estimated spectrum is the F'T of windowed

version of the autocorrelation function

E[P.(f)] = / " Ru(@)W(f — a)da

—0.5
e The bias vanishes for large /N, but not the variance

e We lose an important property with this straightforward estimator.

Hence we need more complicated methods
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Estimation of Autocorrelation and Power Spectrum of

Random Signals (Cont.)

e Similar to the deterministic case, we can obtain the samples of the

estimate of the density (periodogram) using DFT

2

I L
Px(ﬁ):— Zx[n]e_j%"k/]v k=0,1,...,N —1
n=0

e In practice, these samples do not provide a good representation, hence

we need to sample more densely. This can be performed by zero padding

the signal first, upto L samples

2

L 1 N—1
P(7) =+ > x[n]e IR/ k=0,1,...,L —1
n=0
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Nonparametric Power Spectrum Estimation Methods
e We consider three nonparametric methods (no assumption on data, no
modeling)
— The Bartlett Method: Averaging Periodograms
— The Welch Method: Averaging Modified Periodograms
— The Blackman and Tuckey Method: Smoothing Periodograms
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Nonparametric Power Spectrum Estimation Methods:
The Bartlett Method

e Reduce variance by averaging the periodogram of the parts of the

original signal

e Group data of length N into smaller segments of length M
z;ln|=xzn+iM) i=0,1,....K—-1 n=0,1,....M—1

e For each of these subgroups we have

E : 37@ —327Tfn

e Averaging yields an estimate of the periodogram

1 K—1 .
=% Z P(f)
1=0

2

PW(f , i=0,1,..., K -1




Bartlett Method: Properties

Let us have a look at the mean
E[PE()] = # i B[R]
= B[PP()]

The mean of the subgroups is
(4) _ B —j2mfm _
e[ = 2 (1-50) Rl S,(f) #w(f)

That is the expected value is equal to the convolved version of the
original density speectrum as before

However, now the convolving window is more narrow (M samples
instead of V)

That is we lose frequency resolution by a factor of K

Advantage: decreased variance, variance is reduced by a factor of K
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Nonparametric Power Spectrum Estimation Methods:

The Welch Method

Reduce variance by averaging the periodograms as in Bartlett method

Now, the groups are allowed to have overlapping samples, and the

avreaging is done using some modified version of the periodogram

Let us group the data into overlapping subgroups
z;n|=x(n+:iD) +i=0,1,....L—-1 n=0,1,....M —1

Now let us also modify the segments with a window function to obtain

2

PO(f) =~ | 3 mfnwlnles27"
n=0

where U = - Zn 0 "w?2[n] is a normalization factor
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Nonparametric Power Spectrum Estimation Methods:

The Welch Method (Cont.)

e The Welch method then results in the following estimate

\




/ Welch Method: Properties \

e Let us have a look at the expected value of the estimate

EPY(N)] = %X B[RO
= B|PO(f)]

e The expected value for the segments is

E [ngi)(f)} — MU Z Z wn]w[m]E [z;[n]z; [m]] o— 32 f (n—m)
- MU Dm0 Xome 0 wﬁniwjmj R, (n — m)e—i2nf(n=m)
= o SM LS w[njw[m)

% [%7 S, (a)e et ) da

= Su(f)* W(f)
where
M 2
W(f)= Vi Z wln)e™ 72"
n=0




Welch Method: Properties

e The variance has a more flexible expression (since overlapping is
allowed) than the Bartlett method, allowing for better tradeof between

frequency resolution and variance




/ Nonparametric Power Spectrum Estimation Methodsz\
The Blackman and Tuckey Method

e The estimated autocorrelation function is windowed first before the
Fourier transform yielding the estimate for the spectrum

e The windowing helps to give less weight (or eliminate) the large lag
samples. These large lag samples produce poor results since less samples
are used in the estimation

e Therefore, our estimate is

M—-1
PP (f)= >  Re[mlw[m]e /™™
m=—M+41

e Since we now have a window function we can write

o

PEY(f)= 3 Relmufmle /™

s
m=—oo

e Then
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Blackman and Tuckey Method: Properties

e The expected value of the estimate is

E[PPT(f)] = / CEP()W(/f — a)da

—0.5

e Substituting

we obtain the mean as

E[PPY(f / / NWWs(a—OW(f —a)dadd
e Under certain assumptions the variance of BT spectrum estimate is
approximately
| M
SOIEDY w2[m}]
m=—M-+1
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