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• Power Spectrum Estimation: Introduction

• Deterministic Signals: Computation of the Energy Density Spectrum

• Random Signals: Estimation of Autocorrelation and Power Spectrum

• Non-parametric Power Spectrum Estimation Methods

– Bartlett Method

– Welch Method

– Blackman and Tuckey
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Power Spectrum Estimation: Introduction

• The goal is to estimate the power density spectrum of a signal given a
finite length observation of it

• When the signal is stationary the longer the data the better the estimate
is

• When the signal is non-stationary longer data do not guarantee better
estimates

• Power spectrum estimation methods can be categorized into two groups

– Non-parametric estimation: no prior model is assumed, the power
density spectrum samples are estimated directly

– Parametric estimation: prior knowledge is used to model the power
density spectrum using a few parameters, these parameters are
estimated that yield a final estimate of power density spectrum
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Computation of the Energy Density Spectrum

• Remember the definitions of autocorrelation for a deterministic signal

Rx(τ) =
∫ ∞

−∞
x∗a(t)xa(t + τ)dt

and the energy density spectrum which is the Fourier transform of the
autocorrelation function

Sx(F ) =
∫ ∞

−∞
Rx(τ)e−j2πFtdτ

• Let us consider calculating these from the samples of x(t)

• When there is no aliasing there is a one-to-one relation between the
samples of a signal and the signal itself
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Computation of the Energy Density Spectrum (Cont.)

• For a discrete signal

Rx[k] =
∞∑

n=−∞
x∗[n]x[n + k]

and

Sx(f) =
∞∑

k=−∞

Rx[k]e−j2πkf

• Sx(f) can also be directly calculated as

Sx(f) = |X(f)|2 =

∣∣∣∣∣
∞∑

n=−∞
x[n]e−j2πfn

∣∣∣∣∣
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Computation of the Energy Density Spectrum (Cont.)

• In practice we will have only finite number of samples

• This limitation can mathematicall represented by multiplying the
original function with a window function

• Assuming we have N samples, the signal that we will be using is

x̃[n] = x[n]w[n] =

 x[n], 0 ≤ n ≤ N − 1

0, otherwise

• Using this truncated signal we have

X̃(f) = X(f) ∗W (f) =
∫ 0.5

−0.5

X(α)W (f − α)dα

• This windowing results in errenous frequency components, called the
leakage, where the actual signal frequency content is zero

• As in filter design, we can use different windows to reduce leakage in the
price of a drawback such as increasing the width of the main lobe
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Computation of the Energy Density Spectrum (Cont.)

• Using DFT we can calculate the samples of the spectrum

Sx̃x̃

[
k

N

]
=

∣∣∣∣∣
N−1∑
n=0

x̃[n]e−j2πkn/N

∣∣∣∣∣
2

• We have distortions due to windowing
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Estimation of Autocorrelation and Power Spectrum of
Random Signals

• Remember definitions for random signals

Rx(τ) = E[x ∗ (t)x(t + τ)]

and

Sx(F ) =
∫ ∞

−∞
Rx(τ)e−j2πFtdta

• Problem: We do not know true autocorrelation, but need to estimate it
from a single realization (what we observe)

R̂x(τ) =
1

2T0

∫ T0

−T0

x∗(t)x(t + τ)dt (∗)

• Assuming ergodicty, we have

lim
T0→∞

R̂x(τ) = Rx(τ)

• Therefore we will be using Eq. (*) as the estimate of the autocorrelation
function
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

• We obtain an estimate of Sx(F ) using the time average of the
autocorrelation function

Px(F ) =
∫ T0

−T0
Rx(τ)e−j2πFτdτ

= 1
2T0

∫ T0

−T0

[∫ T0

−T0
x∗(t)x(t + τ)e−j2πFτdt

]
dτ

= 1
2T0

∫ T0

−T0
x∗(t)

[∫ T0

−T0
x(t + τ)dt

]
e−j2πFτdτ

= 1
2T0

∣∣∣∫ T0

−T0
x(t)e−j2πFtdt

∣∣∣2
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

• Now let us turn back to discrete case

• We have the estimate of the autocorrelation function

R̂x[m] =
1

N −M

N−m−1∑
n=0

x∗[n]x[n + m], m = 0, 1, . . . , N − 1

• Let us have a look at the mean of this estimate

E
[
R̂x[m]

]
=

1
N −M

N−m−1∑
n=0

E [x∗[n]x[n + m]] = Rx[m]

• Unbiased estimate

• The variance can be shown to limit to zero for large sample size
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

• Although the variance is zero for large N , it is high for large values of m

given a finite M

• To obtain an estimate with smaller variance, we sacrifice unbiasedness

• Consider the estimate

Rx[m] =
1
N

N−m−1∑
m=0

x∗[n][n + m] (∗)

• This estimate is clearly biased but can be shown to have smaller
variance and is preferrable

• Bias which is equal to |m|Rx[m]/N vanishes and variance aproaches zero
as N gets larger
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

• Using Eq. (*) as the estimate of autocorrelation, we obtain the
periodogram

Px(f) =
∑N−1

m=−N+1 R̂x[m]e−j2πfm

= 1
N

∣∣∣∑N−1
n=0 x[n]e−j2πfn

∣∣∣2 = 1
N |X(f)|2
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

• Let us have a look at the mean of Px(f)

E[Px(f)] = E
[∑N−1

m=−N+1 R̂x[m]e−j2πfm
]

=
∑N−1

m=−N+1 E
[
R̂x[m]

]
e−j2πfm

=
∑N−1

m=−N+1

(
1− |m|

N

)
Rx[m]e−j2πfm

• That is the mean of the estimated spectrum is the FT of windowed
version of the autocorrelation function

E[Px(f)] =
∫ 0.5

−0.5

Rx(α)W (f − α)dα

• The bias vanishes for large N , but not the variance

• We lose an important property with this straightforward estimator.
Hence we need more complicated methods
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Estimation of Autocorrelation and Power Spectrum of
Random Signals (Cont.)

• Similar to the deterministic case, we can obtain the samples of the
estimate of the density (periodogram) using DFT

Px(
k

N
) =

1
N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πnk/N

∣∣∣∣∣
2

k = 0, 1, . . . , N − 1

• In practice, these samples do not provide a good representation, hence
we need to sample more densely. This can be performed by zero padding
the signal first, upto L samples

Px(
k

L
) =

1
N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πnk/L

∣∣∣∣∣
2

k = 0, 1, . . . , L− 1
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Nonparametric Power Spectrum Estimation Methods

• We consider three nonparametric methods (no assumption on data, no
modeling)

– The Bartlett Method: Averaging Periodograms

– The Welch Method: Averaging Modified Periodograms

– The Blackman and Tuckey Method: Smoothing Periodograms
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Nonparametric Power Spectrum Estimation Methods:
The Bartlett Method

• Reduce variance by averaging the periodogram of the parts of the
original signal

• Group data of length N into smaller segments of length M

xi[n] = x(n + iM) i = 0, 1, . . . ,K − 1 n = 0, 1, . . . ,M − 1

• For each of these subgroups we have

P (i)
x (f) =

1
M

∣∣∣∣∣
M−1∑
n=0

xi[n]e−j2πfn

∣∣∣∣∣
2

, i = 0, 1, . . . ,K − 1

• Averaging yields an estimate of the periodogram

PB
x (f) =

1
K

K−1∑
i=0

P (i)
x (f)
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Bartlett Method: Properties

• Let us have a look at the mean

E
[
PB

x (f)
]

= 1
K

∑K−1
i=0 E

[
P

(i)
x (f)

]
= E

[
P

(i)
x (f)

]
• The mean of the subgroups is

E
[
P (i)

x (f)
]

=
M−1∑
−M+1

(
1− |m|

M

)
Rx[m]e−j2πfm = Sx(f) ∗ w(f)

• That is the expected value is equal to the convolved version of the
original density speectrum as before

• However, now the convolving window is more narrow (M samples
instead of N)

• That is we lose frequency resolution by a factor of K

• Advantage: decreased variance, variance is reduced by a factor of K
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Nonparametric Power Spectrum Estimation Methods:
The Welch Method

• Reduce variance by averaging the periodograms as in Bartlett method

• Now, the groups are allowed to have overlapping samples, and the
avreaging is done using some modified version of the periodogram

• Let us group the data into overlapping subgroups

xi[n] = x(n + iD) i = 0, 1, . . . , L− 1 n = 0, 1, . . . ,M − 1

• Now let us also modify the segments with a window function to obtain

P̃ (i)(f) =
1

MU

∣∣∣∣∣
M−1∑
n=0

xi[n]w[n]e−j2πfn

∣∣∣∣∣
2

where U = 1
M

∑M−1
n=0 w2[n] is a normalization factor
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Nonparametric Power Spectrum Estimation Methods:
The Welch Method (Cont.)

• The Welch method then results in the following estimate

PW
x (f) =

1
L

L−1∑
i=0

P̃ (i)
x (f)
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Welch Method: Properties

• Let us have a look at the expected value of the estimate

E
[
PW

x (f)
]

= 1
K

∑K−1
i=0 E

[
P̃

(i)
x (f)

]
= E

[
P̃

(i)
x (f)

]
• The expected value for the segments is

E
[
P̃

(i)
x (f)

]
= 1

MU

∑M−1
n=0

∑M−1
m=0 w[n]w[m]E [xi[n]x∗i [m]] e−j2πf(n−m)

= 1
MU

∑M−1
n=0

∑M−1
m=0 w[n]w[m]Rx(n−m)e−j2πf(n−m)

= 1
MU

∑M−1
n=0

∑M−1
m=0 w[n]w[m]

×
∫ 0.5

−0.5
Sx(α)e−j2π(n−m)(f−α)dα

= Sx(f) ∗W (f)

where

W (f) =
1

MU

∣∣∣∣∣
M−1∑
n=0

w[n]e−j2πfn

∣∣∣∣∣
2
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Welch Method: Properties

• The variance has a more flexible expression (since overlapping is
allowed) than the Bartlett method, allowing for better tradeof between
frequency resolution and variance
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Nonparametric Power Spectrum Estimation Methods:
The Blackman and Tuckey Method

• The estimated autocorrelation function is windowed first before the
Fourier transform yielding the estimate for the spectrum

• The windowing helps to give less weight (or eliminate) the large lag
samples. These large lag samples produce poor results since less samples
are used in the estimation

• Therefore, our estimate is

PBT
x (f) =

M−1∑
m=−M+1

Rx[m]w[m]e−j2πfm

• Since we now have a window function we can write

PBT
x (f) =

∞∑
m=−∞

Rx[m]w[m]e−j2πfm

• Then
PBT

x (f) = Px(f) ∗W (f)
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Blackman and Tuckey Method: Properties

• The expected value of the estimate is

E[PBT
x (f)] =

∫ 0.5

−0.5

E[Px(α)]W (f − α)dα

• Substituting

E[Px(α)] =
∫ 0.5

−0.5

[Sx(θ)]WB(α− θ)dθ

we obtain the mean as

E[PBT
x (f)] =

∫ 0.5

−0.5

∫ 0.5

−0.5

Sx(θ)WB(α− θ)W (f − α)dαdθ

• Under certain assumptions the variance of BT spectrum estimate is
approximately

S2
x(f)

[
1
N

M−1∑
m=−M+1

w2[m]

]


