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Performance Analysis of Non-parametric Power
Spectrum Estimation

• Let us evaulate three methods that we discussed

• Performance measure: variance, we use the normalized variance with the
signal power

V =
var[Px(f)]
[E[Px(f)]]2

• Periodogram: the variance is

S2
x(f)

[
1 +

(
sin 2πfN

Nsin2πf

)2
]

and the mean is ∫ 0.5

−0.5

Sx(θ)WB(f − θ)dθ

• The ratio goes to 1 as N increases to infinity
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Performance Analysis: Bartlett Method

• The variance of the Bartlett estimate is

1
K

S2
x(f)

[
1 +

(
sin 2πfM

Msin2πf

)2
]

• The mean is ∫ 0.5

−0.5

Sx(θ)WB(f − θ)dθ

where

WB(f) =
1
M

(
sinπfM

sinπf

)2

• If we calculate the value of the performance measure as N,M →∞ we
find that it is 1/K

• Can be made very small with large K

• However large K results in a very poor frequency resolution: tradeoff
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Performance Analysis: Welch Method

• Variance of two examples of Welch estimate 1
LS2

x(f), no overlap
9

8LS2
x(f), 50% overlap, triangular window

• The mean is ∫ 0.5

−0.5

Sx(θ)WB(f − θ)dθ

where

W (f) =
1

MU

∣∣∣∣∣
M−1∑
n=0

w[n]e−j2πfn

∣∣∣∣∣
2

• Calculating the performance measure as N,M →∞, we have M
N , nooverlap

9M
16N , 50%overlap


• Tradeoff between frequency resolution and estimation performance
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Performance Analysis: Blackman-Tuckey

• We have approximate expressions for the variance

S2
x(f)

 1
N

M−1∑
m=−(M−1)

w2[m]


and the mean ∫ 0.5

−0.5

Sx(θ)W (f − θ)dθ

where W is the windowing function

• An example of triangular window results in the performance criterion
value 2M

3N

• All methods exhibit a tradeoff characteristics between frequency
resolution and the estimation performance

• If both are considered, Bartlett performs poorly compared to other two
methods
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Parametric Power Spectrum Estimation: Parametric
Modeling

• Remember we related the PSD to autocorrelation using a finite
summation

• This is equivalent to assuming that the autocorrelatin values are zero
outside the summation range, which is not true in reality

• This, along with windowing, was required since we estimated the
autocorrelation sample by sample

• We can avoid all these by using a parametric model for the random signal
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Parametric Power Spectrum Estimation: Parametric
Modeling (Cont.)

• We will model the random signal as being the output of an ARMA
system in general

H(z) =
∑q

k=0 b−k
k

1 +
∑p

k=1 akz−k

resulting in the difference equation

x[n] = −
p∑

k=1

akx[n− k] +
q∑

k=0

bkw[n− k]

where w[n] is assumed to be white noise

• Then, the PSD is

Sx(f) = |H(f)|2Sw(f) = σ2
w|H(f)|2 = σ2

w

|B(f)|2

A(f)|2

• With this modeling, we have reduced the power spectrum estimation to
the estimation of ak’s and bk’s
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Relation Between Model Parameters and
Autocorrelation

• Remember

x[n] = −
p∑

k=1

akx[n− k] +
q∑

k=0

bkw[n− k]

• Then the autocorrelation is

Rx[m] =


−

∑p
k=1 akRx[m− k], m > q

−
∑p

k=1 akRx[m− k] + σ2
w

∑q−m
k=0 h[k]bk+m, m ≤ 0 ≤ q

R∗
x[−m], m < 0

for a general ARMA model

• These equations can be written in matrix form and can be solved
efficiently
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Yule-Walker Algorithm: AR Model

• Consider the AR version of the model

Rx[m] =


−

∑p
k=1 akRx[m− k], m > 0

−
∑p

k=1 akRx[m− k] + σ2
w, m = 0

R∗
x[−m], m < 0

• Then we have the following equation

Rx(0) Rx(−1) . . . Rx(1− p)

Rx(1) Rx(0) . . . Rx(2− p)

· · . . . ·
· · . . . ·
· · . . . ·

Rx(p− 1) Rx(p− 2) . . . Rx(0)





a1

a2

·
·
·

ap


= −



Rx(1)

Rx(2)

·
·
·

Rx(p)


• The model parameters can be determined using fast matrix inversion

algorithms such as Levinson-Durbin
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Selection of AR Model Order

• We model the the random process using an AR model, but how complex
should this AR model be?

• A too simple AR model would overly smooth (simplify) the spectrum

• A too complex AR model would introduce unwanted peaks meaning that
we have orders that we do not need

• One method is to look at the error decrease as a function of the order,
and select the order when the decrease in error is no longer significant
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Selection of AR Model Order (Cont.)

• We need to use a criterion which balances the high number of
parameters with a penalty

• One such criterion is Akaike’s information criterion

AIC(p) = log( ˆsigma2
wp) + 2p/N

• Increasing model order p decreases first term but increases second term,
giving an optimum p value

• There are several other model selection criterion such as minum
description length, cirterion autoregressive transfer, etc
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MA Model

• For a moving average model, the relation between the autocorrelation
and the model parameters are

Rx[m] =


0, m > q

σ2
w

∑q
k=0 bkbk+m + σ2

w, 0 ≤ m ≤ q

R∗
x[−m], m < 0

• Since for MA model, autocorrelation is zero for m > q, we can use the
approach in non-parametric power spectrum estimation and use

Px(f) =
q∑

m=−q

Rx[m]e−j2πfm
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MA Model (Cont.)

• Alternatively, the MA model can be approximated with a high order AR
model

B(z) =
1

A(z)

• Then we have A(z)B(z) = 1 resulting in a ∗ b = δ[0]:

q∑
k=0

bkân−k = δ[0]

• Order for MA model can similary be selected based on some model
fitness criterion
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ARMA Model

• Remember the most general relation between autocorrelation and
ARMA model parameters

Rx[m] =


−

∑p
k=1 akRx[m− k], m > q

−
∑p

k=1 akRx[m− k] + σ2
w

∑q−m
k=0 h[k]bk+m, m ≤ 0 ≤ q

R∗
x[−m], m < 0

• We can solve for AR part of model parameters using the values m > q

• For improved performance we will solve the overdetermined system of
equations, assuming we have realiable estimates based upto lag M

Rx[q] Rx[q − 1] . . . Rx[q − p + 1]

Rx[q + 1] Rx[q] . . . Rx[q − p + 2]

· · . . . ·
Rx[M − 1] Rx[M − 2] . . . Rx[M − p]
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ARMA Model (Cont.)

• We know that cascading ARMA model with AR model produces MA
model

• Hence, let us filter x (output of ARMA model) with AR filter to produce

v[n] = x[n] +
p∑

k=1

âkx[n− k]

• This signal v[n] is output of an MA model, so we can apply MA power
spectrum estimation methods

• Last step is to obtain Px by

Px(f) =
Pv(f)
Â2(f)


