Review:

Signals and Systems
Probability Theory
A Bit of Estimation
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Signals and Representations of Them

e A signal f can be represented using several basis functions:
F) = [ K fa)u

e Common basis functions:
— K(u,u') = 0(u,u’) — time/space domain
— K(u,u’) = exp(—juu’) — frequency domain

where the variable u is now called the frequency

e Obtaining (calculating) one representation from the other one is

performed by signal transformation

.
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Analogy to Language

e Think of the signal as a meaning of the word (regardless of a specific
language). Then, different basis functions correspond to different
languages, and signal transforms (and their inverses) correspond to
language translations

e Just as a language may be more suitable to tell a particular story,
different transforms may be more suitable for different applications

e Contrast: There is no perfect language translation (subjective), but
signal transforms are perfect (meaning that well-defined, one to one,

objective)
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Systems

e A system is any kind of mathematical or physical operation that changes

an input signal f to produce the output signal g
e We show g=H{f} in an abstract way

e Linearity: A system is called linear when
a1g1 + azga = a1 H{f1} + asH{ f2}

for g = H{f1} and go = H{ f>}

e Causality: A system is called causal when its output depends on only

the present and past values of the input

. /
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Linear Systems

We will deal with linear systems in this class most of the time if not

always

Mathematically g can be calculated from f and H in different ways

depending on the representation we choose

Example, space/time domain:

g(u) = / F )V H (o)l

Watch for the similarity between signal transforms. Mathematically, a

signal transform and a linear system is equivalent

In reality, in a signal transform, signal is not changed only its
representation; whereas for the linear system case the signal itself is
altered

/
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Time/Space Invariance \

A system is called time/space invariant when a shift in the input signal

causes the same shift in the output signal

In the space domain:
g(u —ug) = /f(u’ — ug) H (u, u")du’

given g(u) = [ f(u')H (u,u")du" (*)
Start with (*)

g(u —ug) = /f(u’)H(u—uo,u’)du’
= /f(u’ — ug)H (u, u")du’
Change of variables u” = 4’ — ug

/ £V (1 — g, o/ )du! = / P H (u, 0 + ug)du”

/
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e That is H(u — ug,u’) = H(u,u’ + ug) The linear system depends only on

the difference between the two variables, so we can write

e g(u)= [ f(u)H(u—u)du

e This equation is called the convolution, the output of a linear system is
obtained by convolving the linear system function with the input only

when it is time/space invariant
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Time/Space Invariant Systems in the Frequency Domain

W= [ f)ha =)

e [et us take the F'T of both sides

/ (u) exp(—juv du—//f h(u —u')du' exp(—juv)du

/f h(u —u')
exp|—

(u — v )v] explj(u — u')v] exp[—juv]du'du

e Remember




e Now we have
G(v) = /f(u’) exp|—ju'v] /h(u —u') exp[—7(u — v)v]dudu’

Finally

G(v)

/ F () exp(—ju'v) H (v)du!
F(v)H (v)
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Discrete Time Systems

e Discrete time systems can either be obtained by sampling a continuous
time signal, or they arise in intermediate steps of discrete time signal

processes: f[n] = f(Tn)

e f[n] is called the discrete time signal obtained by sampling f(u) at
sampling points T'n with n being an integer, and T’ is called the

sampling period

e We will review sampling theorem in detail before starting multirate

signal processing

. /
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Discrete Fourier Transform

e The discrete Fourier Transform of a signal is given by:

Xk] = z_: x[n]exp{—j2mkn/N}

with the inverse

2ln] = % S~ X[k exp{j2mkn/N)

n=0
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Discrete Fourier Transform

e Similar to the continuous case, we have a discrete time convolution for

shift invariant systems:




/ Continuous Fourier Series

e Fourier Series is a way to represent continuous periodic signals

f(t) _ Z Ckeikt

k

e ¢;.’s are called Fourier series coefficients which can be calculated
_ 1 ikt
Cr = f(t)e **dt
2T

e This periodic signal can be made aperiodic by extending the period to
infinity. This after certain manipulations and definitions give us the

regular continuous FT

F(f) = [ s> ar

with inverse F'T

F(t) = / F(f)e™ df




Discrete Fourier Series

Discrete Fourier Series is a way to represent discrete periodic signals

f[n] _ Z Ckez'k:n

k

k,’s are called Fourier series coefficients which can be calculated
1 —in
Ck = o ; flnle g

This periodic signal can be made aperiodic by extending the period to
infinity. This after certain manipulations and definitions give us the
regular discrete time F'T

F(w) = / Flnle—vndt

with inverse F'T )

fln] = %/ | dF(w)eiw”dw

DFT is formed by the samples of DTFT
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Summary

Discrete Fourier Series and Continuous Fourier Series always correspond
to discrete signals (coefficients), for discrete and continuous periodic

signals

When this period is infinity at the limit, the F'T and DTFT are formed
form aperiodic continous and discrete time signals. F'T is aperiodic,
DTFT is periodic.

Periodicity in one domain results in discreteness in other domain and

vise versa

When DTFT is sampled DFT is obtained. DFT itself is periodic and

discrete, a transform for limited discrete signals.

/
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Probability Theory

e A random variable z is a variable that takes different values for different

realizations (unlike deterministic variables where their values are fixed)

e A random process x,, is a collection of random variables indexed with

one or more indices

e A probability density function P(xq) is simply the probability that the
random process can take a particular value:

P(xo) = Probability that x,, = g
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Properties of PDF

P(:I:OES):/SP(:I;n)dazn

/ P(z,)dz, = 1

e Cumulative distribution function C'(x,) is defined as
Clan)= [ Pl

e CDF is the integral of PDF, therefore PDF is the derivative of the CDF

owing to the fundamental law of calculus

e Most of the time, calculating CDF’s are much easier. So, we calculate
CDF’s and take the derivative to obtain PDF’s: Derived PDF method

. /
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Independence, Stationarity, Ergodicity

e T'wo random processes are said to be independent if and only if
P(z,, ) = P(x,) - P(ry,)

e A random process is said to be stationary if the PDF of a function does

not change over time:
P(xnlaxnga K 7377%]\7) — P(xnl—I—noa xng—l—noa s e 7an—|—n—|—O)

e A process is called ergodic when the time averages and the mean are

equivalent:

1
1. - — nP nd n

. /




Conditional Probability and Bayes’ Rule
e Conditional probability: P(A/B) = P(A) given B

e P(A/B)=P(A,B)/P(B). If A and B are independent
P(A/B) = P(A,B)/P(B) = P(A)P(B)/P(B) = P(A)

e Bayes’ Rule: a relation between prior and posterior probabilities

B/A)P(A)
P(B)

pa/B) = 2L
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Statistical Moments

We often use statistical moments instead of the full PDF to understand

and analyze a random process
Mean: p, = [ xnP(zy,)dz,
Variance: [(x, — pg, )P(zy)dx,

Mean and variance completely determines some PDF’s such as the

Normal(Gaussian) PDF, but this is not true in general
Autocorrelation ¢g, : E{x, i mxt}

Autocovariance: E{(xpim — phz)(Tn — )™}
Crosscorrelation ¢, : E{Tp+my):}

Autocorrelation: E{(Zn4+m — i)Yy — tty)*}




Properties of Autocorrelation Function
e Max at zero
e Monotonically decreasing

e When a random process x passes through a linear system with frequency
response H(v) producing another random process y we have the relation

Qyy = |H (v) ‘2@03:




Estimation

In probability theory, we do not talk about the origin of variables

involved such as mean, variance, or other functions of PDF’s

When it comes to real life we need to find out the values of such

quantities
This is called estimation

Generally and roughly speaking, we have access to some observations

which are random

Based on these observations, estimation is the process of calculating a
guess of what e.g. an input signal, a parameter of the input signal, or

some parameters of a system are




Detection

e Detection is a special case of estimation, the only parameter we want to
estimate is the existence or the non-existence of a signal

e Example: we listen to a phone line and try to decide weather there is a

speech signal present or not

e Example: we look at a water supply and try to find out if it contains
harmful chemicals

. /
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Different Philosophies of Estimation

Stochastic Estimation: we assume that the quantity we want to estimate

is stochastic, hence we estimate its moments, or pdf

Deterministic Estimation: We assume that the quantity we want to

estimate is deterministic but unknown

Bayesian Estimation: We assume prior knowledge about the signal to be
estimated, such as the PDF of the signal

Non-bayesian Estimation: We assume that we do not know anything

about the signal to be estimated

Bayesian estimation of course has the advantage of utilizing prior
knowledge, but this may sometimes bias the estimation towards an

incorrect estimate (depending on the accuracy of our prior knowledge)

/




Basic Steps of Estimation

e Construct a mathematical model, including the parametrization of the

quantity /signal of interest

e Construct a cost function, such as the negative likelihood or mean

squared error

e (Calculate or develop a method of minimizing this cost function

.




