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Review:
Signals and Systems
Probability Theory
A Bit of Estimation
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Signals and Representations of Them

• A signal f can be represented using several basis functions:

f(u) =
∫
K(u, u′)f(u′)du′

• Common basis functions:

– K(u, u′) = δ(u, u′)→ time/space domain

– K(u, u′) = exp(−juu′)→ frequency domain
where the variable u is now called the frequency

• Obtaining (calculating) one representation from the other one is
performed by signal transformation



'

&

$

%

Analogy to Language

• Think of the signal as a meaning of the word (regardless of a specific
language). Then, different basis functions correspond to different
languages, and signal transforms (and their inverses) correspond to
language translations

• Just as a language may be more suitable to tell a particular story,
different transforms may be more suitable for different applications

• Contrast: There is no perfect language translation (subjective), but
signal transforms are perfect (meaning that well-defined, one to one,
objective)
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Systems

• A system is any kind of mathematical or physical operation that changes
an input signal f to produce the output signal g

• We show g=H{f} in an abstract way

• Linearity: A system is called linear when

a1g1 + a2g2 = a1H{f1}+ a2H{f2}

for g1 = H{f1} and g2 = H{f2}

• Causality: A system is called causal when its output depends on only
the present and past values of the input
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Linear Systems

• We will deal with linear systems in this class most of the time if not
always

• Mathematically g can be calculated from f and H in different ways
depending on the representation we choose

• Example, space/time domain:

g(u) =
∫
f(u′)H(u, u′)du′

• Watch for the similarity between signal transforms. Mathematically, a
signal transform and a linear system is equivalent

• In reality, in a signal transform, signal is not changed only its
representation; whereas for the linear system case the signal itself is
altered
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Time/Space Invariance

• A system is called time/space invariant when a shift in the input signal
causes the same shift in the output signal

• In the space domain:

g(u− u0) =
∫
f(u′ − u0)H(u, u′)du′

given g(u) =
∫
f(u′)H(u, u′)du′ (*)

• Start with (*)

g(u− u0) =
∫
f(u′)H(u− u0, u

′)du′

=
∫
f(u′ − u0)H(u, u′)du′

• Change of variables u′′ = u′ − u0∫
f(u′)H(u− u0, u

′)du′ =
∫
f(u′′)H(u, u′′ + u0)du′′
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• That is H(u− u0, u
′) = H(u, u′ + u0) The linear system depends only on

the difference between the two variables, so we can write

• g(u) =
∫
f(u′)H(u− u′)du′

• This equation is called the convolution, the output of a linear system is
obtained by convolving the linear system function with the input only
when it is time/space invariant
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Time/Space Invariant Systems in the Frequency Domain

• Remember

g(u) =
∫
f(u′)h(u− u′)du′

• Let us take the FT of both sides∫
g(u) exp(−juv)du =

∫ ∫
f(u′)h(u− u′)du′ exp(−juv)du

•

G(v) =
∫
f(u′)h(u− u′)

exp[−j(u− u′)v] exp[j(u− u′)v] exp[−juv]du′du
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• Now we have

G(v) =
∫
f(u′) exp[−ju′v]

∫
h(u− u′) exp[−j(u− u′)v]dudu′

Finally

G(v) =
∫
f(u′) exp(−ju′v)H(v)du′

= F (v)H(v)
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Discrete Time Systems

• Discrete time systems can either be obtained by sampling a continuous
time signal, or they arise in intermediate steps of discrete time signal
processes: f [n] = f(Tn)

• f [n] is called the discrete time signal obtained by sampling f(u) at
sampling points Tn with n being an integer, and T is called the
sampling period

• We will review sampling theorem in detail before starting multirate
signal processing
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Discrete Fourier Transform

• The discrete Fourier Transform of a signal is given by:

X[k] =
N−1∑
n=0

x[n] exp{−j2πkn/N}

with the inverse

x[n] =
1
N

N−1∑
n=0

X[k] exp{j2πkn/N}
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Discrete Fourier Transform

• Similar to the continuous case, we have a discrete time convolution for
shift invariant systems:

g[n] =
N∑

n′=0

h[n− n′]f [n′]

• This corresponds to a multiplication in the frequency domain

G[k] = H[k]f [k]



'

&

$

%

Continuous Fourier Series

• Fourier Series is a way to represent continuous periodic signals

f(t) =
∑
k

cke
ikt

• ck’s are called Fourier series coefficients which can be calculated

ck =
1

2π

∫
f(t)e−iktdt

• This periodic signal can be made aperiodic by extending the period to
infinity. This after certain manipulations and definitions give us the
regular continuous FT

F (f) =
∫
f(t)e−i2πtfdt

with inverse FT

f(t) =
∫
F (f)ei2πtfdf
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Discrete Fourier Series

• Discrete Fourier Series is a way to represent discrete periodic signals

f [n] =
∑
k

cke
ikn

• kn’s are called Fourier series coefficients which can be calculated

ck =
1

2π

∑
n

f [n]e−ink

• This periodic signal can be made aperiodic by extending the period to
infinity. This after certain manipulations and definitions give us the
regular discrete time FT

F (w) =
∫
f [n]e−iwndt

with inverse FT
f [n] =

1
2π

∫
period

F (w)eiwndw

• DFT is formed by the samples of DTFT
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Summary

• Discrete Fourier Series and Continuous Fourier Series always correspond
to discrete signals (coefficients), for discrete and continuous periodic
signals

• When this period is infinity at the limit, the FT and DTFT are formed
form aperiodic continous and discrete time signals. FT is aperiodic,
DTFT is periodic.

• Periodicity in one domain results in discreteness in other domain and
vise versa

• When DTFT is sampled DFT is obtained. DFT itself is periodic and
discrete, a transform for limited discrete signals.
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Probability Theory

• A random variable x is a variable that takes different values for different
realizations (unlike deterministic variables where their values are fixed)

• A random process xn is a collection of random variables indexed with
one or more indices

• A probability density function P (x0) is simply the probability that the
random process can take a particular value:

P (x0) = Probability that xn = x0
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Properties of PDF

•
P (x0εS) =

∫
S

P (xn)dxn

• ∫
P (xn)dxn = 1

• Cumulative distribution function C(xn) is defined as

C(xn) =
∫ xn

−∞
P (x′n)dx′n

• CDF is the integral of PDF, therefore PDF is the derivative of the CDF
owing to the fundamental law of calculus

• Most of the time, calculating CDF’s are much easier. So, we calculate
CDF’s and take the derivative to obtain PDF’s: Derived PDF method
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Independence, Stationarity, Ergodicity

• Two random processes are said to be independent if and only if

P (xn, xm) = P (xn).P (xm)

• A random process is said to be stationary if the PDF of a function does
not change over time:

P (xn1 , xn2 , . . . , xnN
) = P (xn1+n0 , xn2+n0 , . . . , xnN+n+0)

• A process is called ergodic when the time averages and the mean are
equivalent:

lim
n→∞

1
n

n∑
k=0

xk =
∫
xnP (xn)dxn
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Conditional Probability and Bayes’ Rule

• Conditional probability: P (A/B) = P (A) given B

• P (A/B) = P (A,B)/P (B). If A and B are independent
P (A/B) = P (A,B)/P (B) = P (A)P (B)/P (B) = P (A)

• Bayes’ Rule: a relation between prior and posterior probabilities

P (A/B) =
P (B/A)P (A)

P (B)
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Statistical Moments

• We often use statistical moments instead of the full PDF to understand
and analyze a random process

• Mean: µxn =
∫
xnP (xn)dxn

• Variance:
∫

(xn − µxn
)P (xn)dxn

• Mean and variance completely determines some PDF’s such as the
Normal(Gaussian) PDF, but this is not true in general

• Autocorrelation φxx : E{xn+mx
∗
n}

• Autocovariance: E{(xn+m − µx)(xn − µx)∗}

• Crosscorrelation φxy : E{xn+my
∗
n}

• Autocorrelation: E{(xn+m − µx)(y∗n − µy)∗}
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Properties of Autocorrelation Function

• Max at zero

• Monotonically decreasing

• When a random process x passes through a linear system with frequency
response H(v) producing another random process y we have the relation
φyy = |H(v)|2φxx
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Estimation

• In probability theory, we do not talk about the origin of variables
involved such as mean, variance, or other functions of PDF’s

• When it comes to real life we need to find out the values of such
quantities

• This is called estimation

• Generally and roughly speaking, we have access to some observations
which are random

• Based on these observations, estimation is the process of calculating a
guess of what e.g. an input signal, a parameter of the input signal, or
some parameters of a system are
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Detection

• Detection is a special case of estimation, the only parameter we want to
estimate is the existence or the non-existence of a signal

• Example: we listen to a phone line and try to decide weather there is a
speech signal present or not

• Example: we look at a water supply and try to find out if it contains
harmful chemicals
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Different Philosophies of Estimation

• Stochastic Estimation: we assume that the quantity we want to estimate
is stochastic, hence we estimate its moments, or pdf

• Deterministic Estimation: We assume that the quantity we want to
estimate is deterministic but unknown

• Bayesian Estimation: We assume prior knowledge about the signal to be
estimated, such as the PDF of the signal

• Non-bayesian Estimation: We assume that we do not know anything
about the signal to be estimated

• Bayesian estimation of course has the advantage of utilizing prior
knowledge, but this may sometimes bias the estimation towards an
incorrect estimate (depending on the accuracy of our prior knowledge)
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Basic Steps of Estimation

• Construct a mathematical model, including the parametrization of the
quantity/signal of interest

• Construct a cost function, such as the negative likelihood or mean
squared error

• Calculate or develop a method of minimizing this cost function


