Fast Fourier Transform

Direct computation of DF'T

FFT algorithms using divide and conquer

— Basic idea is to separate the whole DFT into smaller pieces to avoid

repetitions, and smaller pieces require much less computation

FFT algorithms using linear filtering

— Goertzel algorithm

Error analysis

Applications

Direct Computation of DFT

We have
N—1
X[kl = x(n)Wx"
n=0

For each value of X (k) we need N complex multiplications, N — 1

additions

Total N? multiplications (4N? real multiplications), and N2 — N

additions

And calculation of exponentials. Independent of data, can be

pre-calculated.

Why We Can Do It Fast?

e Such a direct computation would be valid for any values of Wi

e In DFT Wy is a nice function with certain properties
— Symmetry: WJI\#NQ = -W£§
— Periodicity: W}f,‘LN =Wk

e These allow for fast computation algorithms

.

Sy
e

-
+ §|._\

Divide and Conquer

h
<
S

0 0 0
o N—1 -
TM w[0]
i oaN'Z2
.y L wl1]
e X .
2L _ 2 LN—-L
M — M LM
2L+2 9 2 (L+1)(N—=1) N-1 N—1 N —1
= = 4 < = + L =l]
T M M T LM T M M T M

Divide and Conquer (Cont.)

Let us regroup the signal and its DFT so that the repetitions from the

previous slide can be exploited
Regroup x[n] as x[l,m| and X k] as X|p, ¢

We now have

M-1L-1
ZC W(MP+Q)(mL‘|‘l)

m=0 [=0
Using W™ =1, Wt =W wyrt = wr
Z{ lq[lem]}Wip

~

4 N

Divide and Conquer: Cost
e Total cost: N(M + L+ 1) complex multiplications, N(M + L — 2)

complex additions instead of N? complex multiplications and N? — N

complex additions

e Example N = 10000, M = 100, L = 100. Direct computation: 10°
multiplications, divide and conquer: 198.10* — approximately 50 times

savings

e Even further simplifications possible when N can be divided into more

number of products of prime numbers

. /

-

Radix-2 FFT Algorithm

e Special case of divide and conquer where N = 2"

e Our DFT is
N-1
X[k = z[n]Wx"
n=0
(N/2)—1 (N/2)—1
= x[2m| W2k 4 Z r[2m + 1]W]lf](2m+1)
m=0 m=0

e But we have W3 = Wi 2,

(N/2)—1 (N/2)—1
Xk =) AMWNL+Wr Y falm WA
m=0 m—0

= Fi[k] + Wy Fa[k]

.

4 N

Radix-2 FFT Algorithm (Cont.)
e Utilize the periodicity Fi[k] and Fy|k] with Wh'™/? = —Wyk:
X[k] = Fi[k] + W Fy[k] k=0,1,...,N/2—-1
X[k + N/2] = Fi[k] — W} Fy[k] k=0,1,...,N/2 -1

e Computation cost: 2(N/2)? + N/2 = N?/2 + N/2 multiplications, about

half reduction in multiplication number

e We can even further divide each of the DFT’s by two since N = 2"
resulting in (IN/2)log,(IN) multiplications in total

Swage | Stage 2 Stage 3

xl) - / \ - Xim
w! /
- # - + X(1)

xid) @

w2) Xi2)
xib) + X(3)
wl) X(4)
W) X(3)
W3 * X(6)
W7) X(7)

r -1 -

Figure 8.1.6 Eight-point decimation-in-time FFT algorithm,

A=a+Wy b

Bz.:;—W;r b

=]

Figure 8.1.7 Basic butterfly computation in the decimation-in-time FFT
algorithm.

FFT using linear filtering approaches

e DFT can be seen as a filtering operation with filter having the impulse

response W™
e F'F'T is more efficient when the number of DFT points is large

e Linear filtering methods are more efficient when the number of DF'T

points is small

e Goertzel Algorithm

Goertzel Algorithm

Let us modify original DF'T by multiplying it with W&kN = 1:
N—1 N—1
X[k = yu[N] = W™ S~ afm]wgm = 3 afm)wy "™
m=0 m=0

This is a convolution sum which can be computed using a recursive

relation:

yrln] = Wy yeln — 1] + [n]
We need N multiplications to reach yg[IV]

Assume we need only one value of the DFT then N complex

multiplications is sufficient

More efficient when number of points needed is less than logs (V)

Error Analysis
We can use only finite number of bits when calculating the DFT
This causes round-off or quantization errors

Assuming that we use b bits, errors can be in the range
[_0.5(6—#1)7 0.5(b—|—1)]

Let us assume that the error is uniformly distributed: ag = 0'1522 -

Remember we have 4N? real multiplications

Assuming uncorrelated errors we have the total variance

o9 = 4ANo? = %).5%

More bits smaller error of course..

Another error source is scaling to prevent overflowing

Error Analysis (Cont.)

In DFT we have seen that error variance depends on the number of

multiplications

So: does FFT (with smaller number of multiplications) result in smaller

error

Is this heaven: simpler calculation AND less error?

No!, the error is the same as DFT

Expected since mathematically FF'T and DFT are identical

What happens is that the errors in multiplications are no longer

independent..

Applications
e Of course any place where DFT' is used
e Linear filtering: convolution

e Correlation: time reverse one sequence and calculate the convolution

