
'

&

$

%

Fast Fourier Transform

• Direct computation of DFT

• FFT algorithms using divide and conquer

– Basic idea is to separate the whole DFT into smaller pieces to avoid
repetitions, and smaller pieces require much less computation

• FFT algorithms using linear filtering

– Goertzel algorithm

• Error analysis

• Applications



'

&

$

%

Direct Computation of DFT

• We have

X[k] =
N−1∑
n=0

x(n)W kn
N

• For each value of X(k) we need N complex multiplications, N − 1
additions

• Total N2 multiplications (4N2 real multiplications), and N2 −N
additions

• And calculation of exponentials. Independent of data, can be
pre-calculated.



'

&

$

%

Why We Can Do It Fast?

• Such a direct computation would be valid for any values of WN

• In DFT WN is a nice function with certain properties

– Symmetry: W k+N/2
N = −W k

N

– Periodicity: W k+N
N = W k

N

• These allow for fast computation algorithms



'

&

$

%

Divide and Conquer

0 0 0 0 0

0 1
LM

2
LM

· · · N−1
LM

0 2
LM

4
LM

· · · 2N−2
LM

· · ·

0 L
LM

= 1
M

2L
LM

= 2
M

· · · LN−L
LM

0 L+1
LM

= 1
M

+ 1
LM

2L+2
LM

= 2
M

+ 2
LM

· · · (L+1)(N−1)
LM

= N−1
M

+ N−1
LM

· · ·

×


x[0]

x[1]

·
·

x[N − 1]





'

&

$

%

Divide and Conquer (Cont.)

• Let us regroup the signal and its DFT so that the repetitions from the
previous slide can be exploited

• Regroup x[n] as x[l,m] and X[k] as X[p, q]

• We now have

X[p, q] =
M−1∑
m=0

L−1∑
l=0

x[l,m]W (Mp+q)(mL+l)
N

• Using WNmp
N = 1, WmqL

N = Wmq
M , WMpl

N = W pl
L

X[p, q] =
L−1∑
l=0

{
W lq

N

[
M−1∑
m=0

x[l,m]Wmq
M

]}
W lp

L



'

&

$

%

Divide and Conquer: Cost

• Total cost: N(M + L+ 1) complex multiplications, N(M + L− 2)
complex additions instead of N2 complex multiplications and N2 −N
complex additions

• Example N = 10000, M = 100, L = 100. Direct computation: 108

multiplications, divide and conquer: 198.104 → approximately 50 times
savings

• Even further simplifications possible when N can be divided into more
number of products of prime numbers



'

&

$

%

Radix-2 FFT Algorithm

• Special case of divide and conquer where N = 2v

• Our DFT is

X[k] =
N−1∑
n=0

x[n]W kn
N

=
(N/2)−1∑

m=0

x[2m]W 2mk
N +

(N/2)−1∑
m=0

x[2m+ 1]W k(2m+1)
N

• But we have W 2
N = WN/2,

X[k] =
(N/2)−1∑

m=0

f1[m]W km
N/2 +W k

N

(N/2)−1∑
m−0

f2[m]W km
N/2

= F1[k] +W k
NF2[k]



'

&

$

%

Radix-2 FFT Algorithm (Cont.)

• Utilize the periodicity F1[k] and F2[k] with W
k+N/2
N = −WNk:

X[k] = F1[k] +W k
NF2[k] k = 0, 1, . . . , N/2− 1

X[k +N/2] = F1[k]−W k
NF2[k] k = 0, 1, . . . , N/2− 1

• Computation cost: 2(N/2)2 +N/2 = N2/2 +N/2 multiplications, about
half reduction in multiplication number

• We can even further divide each of the DFT’s by two since N = 2v

resulting in (N/2) log2(N) multiplications in total



'

&

$

%



'

&

$

%



'

&

$

%

FFT using linear filtering approaches

• DFT can be seen as a filtering operation with filter having the impulse
response W kn

N

• FFT is more efficient when the number of DFT points is large

• Linear filtering methods are more efficient when the number of DFT
points is small

• Goertzel Algorithm



'

&

$

%

Goertzel Algorithm

• Let us modify original DFT by multiplying it with W−kN
N = 1:

X[k] = yk[N ] = W−kN
N

N−1∑
m=0

x[m]W km
N =

N−1∑
m=0

x[m]W−k(n−m)
N

• This is a convolution sum which can be computed using a recursive
relation:

yk[n] = W−k
N yk[n− 1] + x[n]

• We need N multiplications to reach yk[N ]

• Assume we need only one value of the DFT then N complex
multiplications is sufficient

• More efficient when number of points needed is less than log2(N)



'

&

$

%

Error Analysis

• We can use only finite number of bits when calculating the DFT

• This causes round-off or quantization errors

• Assuming that we use b bits, errors can be in the range
[−0.5(b+1), 0.5(b+1)]

• Let us assume that the error is uniformly distributed: σ2
e = 0.52b

12

• Remember we have 4N2 real multiplications

• Assuming uncorrelated errors we have the total variance

σ2 = 4Nσ2
e =

N

3
0.52b

• More bits smaller error of course..

• Another error source is scaling to prevent overflowing



'

&

$

%

Error Analysis (Cont.)

• In DFT we have seen that error variance depends on the number of
multiplications

• So: does FFT (with smaller number of multiplications) result in smaller
error

• Is this heaven: simpler calculation AND less error?

• No!, the error is the same as DFT

• Expected since mathematically FFT and DFT are identical

• What happens is that the errors in multiplications are no longer
independent..



'

&

$

%

Applications

• Of course any place where DFT is used

• Linear filtering: convolution

• Correlation: time reverse one sequence and calculate the convolution


