Fast Fourier Transform

- Direct computation of DFT
- FFT algorithms using divide and conquer
- Basic idea is to separate the whole DFT into smaller pieces to avoid repetitions, and smaller pieces require much less computation
- FFT algorithms using linear filtering
- Goertzel algorithm
- Error analysis
- Applications

Direct Computation of DFT

- We have

$$
X[k]=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}
$$

- For each value of $X(k)$ we need N complex multiplications, N - 1 additions
- Total N^{2} multiplications ($4 N^{2}$ real multiplications), and $N^{2}-N$ additions
- And calculation of exponentials. Independent of data, can be pre-calculated.

Why We Can Do It Fast?

- Such a direct computation would be valid for any values of W_{N}
- In DFT W_{N} is a nice function with certain properties
- Symmetry: $W_{N}^{k+N / 2}=-W_{N}^{k}$
- Periodicity: $W_{N}^{k+N}=W_{N}^{k}$
- These allow for fast computation algorithms

Divide and Conquer

0	0	0	0	0	
0	$\frac{1}{L M}$	$\frac{2}{L M}$	\cdots	$\frac{N-1}{L M}$	
0	$\frac{2}{L M}$	$\frac{4}{L M}$	\cdots	$\frac{2 N-2}{L M}$	
0	$\frac{L}{L M}=\frac{1}{M}$	$\frac{2 L}{L M}=\frac{2}{M}$	\cdots	$\frac{L N-L}{L M}$	
0	$\frac{L+1}{L M}=\frac{1}{M}+\frac{1}{L M}$	$\frac{2 L+2}{L M}=\frac{2}{M}+\frac{2}{L M}$	\cdots	$\frac{(L+1)(N-1)}{L M}=\frac{N-1}{M}+\frac{N-1}{L M}$	$\times\left[\begin{array}{c}x[0] \\ x[1] \\ \cdot \\ \cdot \\ x[N-1]\end{array}\right]$

Divide and Conquer (Cont.)

- Let us regroup the signal and its DFT so that the repetitions from the previous slide can be exploited
- Regroup $x[n]$ as $x[l, m]$ and $X[k]$ as $X[p, q]$
- We now have

$$
X[p, q]=\sum_{m=0}^{M-1} \sum_{l=0}^{L-1} x[l, m] W_{N}^{(M p+q)(m L+l)}
$$

- Using $W_{N}^{N m p}=1, W_{N}^{m q L}=W_{M}^{m q}, W_{N}^{M p l}=W_{L}^{p l}$

$$
X[p, q]=\sum_{l=0}^{L-1}\left\{W_{N}^{l q}\left[\sum_{m=0}^{M-1} x[l, m] W_{M}^{m q}\right]\right\} W_{L}^{l p}
$$

Divide and Conquer: Cost

- Total cost: $N(M+L+1)$ complex multiplications, $N(M+L-2)$ complex additions instead of N^{2} complex multiplications and $N^{2}-N$ complex additions
- Example $N=10000, M=100, L=100$. Direct computation: 10^{8} multiplications, divide and conquer: $198.10^{4} \rightarrow$ approximately 50 times savings
- Even further simplifications possible when N can be divided into more number of products of prime numbers

Radix-2 FFT Algorithm

- Special case of divide and conquer where $N=2^{v}$
- Our DFT is

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \\
& =\sum_{m=0}^{(N / 2)-1} x[2 m] W_{N}^{2 m k}+\sum_{m=0}^{(N / 2)-1} x[2 m+1] W_{N}^{k(2 m+1)}
\end{aligned}
$$

- But we have $W_{N}^{2}=W_{N / 2}$,

$$
\begin{aligned}
X[k] & =\sum_{m=0}^{(N / 2)-1} f_{1}[m] W_{N / 2}^{k m}+W_{N}^{k} \sum_{m-0}^{(N / 2)-1} f_{2}[m] W_{N / 2}^{k m} \\
& =F_{1}[k]+W_{N}^{k} F_{2}[k]
\end{aligned}
$$

Radix-2 FFT Algorithm (Cont.)

- Utilize the periodicity $F_{1}[k]$ and $F_{2}[k]$ with $W_{N}^{k+N / 2}=-W_{N} k$:

$$
\begin{gathered}
X[k]=F_{1}[k]+W_{N}^{k} F_{2}[k] \\
X[k+N / 2]=F_{1}[k]-W_{N}^{k} F_{2}[k]
\end{gathered} \quad k=0,1, \ldots, N / 2-1, N / 2-1 .
$$

- Computation cost: $2(N / 2)^{2}+N / 2=N^{2} / 2+N / 2$ multiplications, about half reduction in multiplication number
- We can even further divide each of the DFT's by two since $N=2^{v}$ resulting in $(N / 2) \log _{2}(N)$ multiplications in total

Figure 8.1.6 Eight-point decimation-in-time FFT algorithm.

Figure 8.1.7 Basic butterfly computation in the decimation-in-time FFT algorithm.

FFT using linear filtering approaches

- DFT can be seen as a filtering operation with filter having the impulse response $W_{N}^{k n}$
- FFT is more efficient when the number of DFT points is large
- Linear filtering methods are more efficient when the number of DFT points is small
- Goertzel Algorithm

Goertzel Algorithm

- Let us modify original DFT by multiplying it with $W_{N}^{-k N}=1$:

$$
X[k]=y_{k}[N]=W_{N}^{-k N} \sum_{m=0}^{N-1} x[m] W_{N}^{k m}=\sum_{m=0}^{N-1} x[m] W_{N}^{-k(n-m)}
$$

- This is a convolution sum which can be computed using a recursive relation:

$$
y_{k}[n]=W_{N}^{-k} y_{k}[n-1]+x[n]
$$

- We need N multiplications to reach $y_{k}[N]$
- Assume we need only one value of the DFT then N complex multiplications is sufficient
- More efficient when number of points needed is less than $\log _{2}(N)$

Error Analysis

- We can use only finite number of bits when calculating the DFT
- This causes round-off or quantization errors
- Assuming that we use b bits, errors can be in the range $\left[-0.5^{(b+1)}, 0.5^{(b+1)}\right]$
- Let us assume that the error is uniformly distributed: $\sigma_{e}^{2}=\frac{0.5^{2 b}}{12}$
- Remember we have $4 N^{2}$ real multiplications
- Assuming uncorrelated errors we have the total variance

$$
\sigma_{2}=4 N \sigma_{e}^{2}=\frac{N}{3} 0.5^{2 b}
$$

- More bits smaller error of course..
- Another error source is scaling to prevent overflowing

Error Analysis (Cont.)

- In DFT we have seen that error variance depends on the number of multiplications
- So: does FFT (with smaller number of multiplications) result in smaller error
- Is this heaven: simpler calculation AND less error?
- No!, the error is the same as DFT
- Expected since mathematically FFT and DFT are identical
- What happens is that the errors in multiplications are no longer independent..

Applications

- Of course any place where DFT is used
- Linear filtering: convolution
- Correlation: time reverse one sequence and calculate the convolution

