Outline

- Discrete time systems (FIR and IIR) and difference equations
- Z-transform
- Recursive and non-recursive realizations
- FIR structures
- Direct-form
- Cascade-form
- Lattices

Discrete Time Systems

- The relation between the input and output of a discrete time system can be written as a convolution sum:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

- Causality: output depends on present or past values of input:

$$
y[n]=\sum_{k=-\infty}^{n} x[k] h[n-k]
$$

- For a causal FIR system, we have finite number of coefficients:

$$
y[n]=\sum_{k=n-(M-1)}^{n} x[k] h[n-k]
$$

Recursive vs Non-recursive Systems

- Non-recursive system: Output depends only on the input
- Recursive system: Output depends on past values of the output as well
- Example: summation \rightarrow a linear system

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{n} x[k] \\
y[n+1] & =\sum_{k=0}^{n+1} x[k]=\sum_{k=0}^{n} x[k]+x[n+1] \\
y[n+1] & =y[n]+x[n+1] \\
y[n] & =y[n-1]+x[n]
\end{aligned}
$$

- That is you can change between recursive (last line) and non-recursive (first line) implementations of the same system

Z Transform

- Definition:

$$
X[z]=\sum_{-\infty}^{\infty} x[n] z^{-n}
$$

- The DFT is a special case of the Z-transform. Calculating Z transform at $z=e^{\frac{j 2 \pi k}{N}}$ results in the DFT.
- The Z transform of $h[n]$ is called the system function
- Example:

$$
\begin{aligned}
y[n] & =0.5 y[n-1]+x[n] \\
Y[z] & =0.5 Y(z) z^{-1}+X[z] \\
H(z) & =\frac{Y(z)}{X(z)}=\frac{1}{1-0.5 z^{-1}}
\end{aligned}
$$

- All these (difference equation, convolution sum, impulse response, system function) are different valid representation of the same linear system.

Inverse Z-transform

- Although Z-transform has a mathematical inverse transformation formula, we usually use look up tables
- Z-Transforms are converted into fractions, and each fraction's z-transform is looked up from a table
- Works since most practical Z-transforms are rational functions

FIR Implementations: Direct Form

$$
\begin{gathered}
y[n]=\sum_{k=0}^{M-1} b_{k} x[n-k] \\
H(z)=\sum_{k=0}^{M-1} b_{k} z^{-k}
\end{gathered}
$$

FIR Implementations: Direct Form

Figure 9.2.1 Direct-form realization of FIR system.

FIR Implementations: Cascade Form

- $H(z)$ can be written as a multiplication of smaller systems:

(a)

(b)

Figure 9.2.3 Cascade realization of an FIR system.

FIR Implementations: Lattices

- We can implement FIR filters in a different way again using smaller structures called lattices.

Figure 9.2.9 Single-stage lattice filter.

FIR Implementations: Lattices

- When we consider an arbitrary lattice

$$
\begin{aligned}
f_{m}[n] & =f_{m-1}[n]+K_{m} g_{m-1}[n-1] \\
g_{m}[n] & =K_{m} f_{m-1}[n]+g_{m-1}[n-1]
\end{aligned}
$$

FIR Implementations: Lattices

- Assuming that the relation between g and x is defined by a system $A(z)$, and the relation between g and x is defined by a system $B(z)$; there is a relation between $A(z)$ and $B(z)$:

$$
B_{m}(z)=z^{-m} A_{m}\left(z^{-1}\right)
$$

- This means coefficients are reversed for $f_{m}[n]$ and $g_{m}[n]$
- This can be seen by calculating $g_{2}[n]$ and then recursively calculating $g_{m}[n]$, and making the above observation

Figure 9.2.10 Two-stage lattice filter.

FIR Implementations: Lattices, Lattice form to Direct form

- The recursive relation between the lattice coefficients and direct form coefficients are then:

$$
\begin{aligned}
A_{0}(z) & =B_{0}(z)=1 \\
A_{m}(z) & =A_{m-1}(z)+K_{m} z^{-1} B_{m-1}(z) \\
B_{m}(z) & =z^{-m} A_{m}\left(z^{-1}\right) \\
B_{m}(z) & =K_{m} A_{m-1}(z)+Z^{-1} B_{m-1}(z)
\end{aligned}
$$

- Direct form coefficients are the coefficients of the final $A_{m}(z)$ that is obtained

FIR Implementations: Lattices, Direct form to Lattice form

- The recursive relation between direct form coefficients and the lattice form coefficients are:

$$
\begin{aligned}
B_{m}(z) & =z^{-m} A_{m}\left(z^{-1}\right) \\
A_{m-1}(z) & =\frac{A_{m}(z)-K_{m} B_{m}(z)}{1-K_{m}^{2}}
\end{aligned}
$$

- These are obtained by simply calculating the inverse of the recursive relations between the lattice form coefficients and the direct form coefficients
- At each iteration K_{m} 's are the coefficients of the largest power of $A_{m}(z)$

FIR Implementations: Lattices

- All smaller lattices get combined to form the final system again using smaller structures called lattices.

(a)

(b)

Figure 9.2.11 $(M-1)$-stage lattice filter.

