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Pole-zero Plots

e Consider a system (filter) with the general frequency response
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which can be written as
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where z; and pgs denote zeros and poles respectively.
e Poles and zeros determine the frequency characteristics of a filter.

e You can create a stop band by placing a zero near that frequency, or a

pass-band by placing a pole near another frequency.
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/ Pole-zeros and frequency response

e The magnitude response |H (w)| can be written as

- Vi(w) .. Vr(w)

H W)l = 5 ) Uy (w)

where V'(.) denotes distance to a zero and U(.) distance to a pole

e By just looking at these distances you can calculate the magnitude

response geometrically using pole-zero plot
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Digital Filters Introduction

Goal of filter design is to create a system given certain specifications
regarding the frequency response

E.g. ideal filter, perfect for passing a certain frequency range and
stopping everything else

However, is it really perfect?
Infinitely long filters!!, not causal!!

Then, you sacrifice certain properties to obtain realizable filters and
causal filters
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Digital Filters Characteristics

e Since you are restricted to realizable and sometimes causal filters, we do

not have ideal filters anymore
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e Filter design is essentially to choose your weights (FIR or ITR) to satisfy
requirements on these specifications.
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Linear Phase Filters

Consider an FIR filter
y(n) =box(n) +biz(n—1)+ ...+ bpy 1 X(n—M +1)

The z-transform will be

A system will be linear phase if
h(n) =+h(M — 1 —n)

With this requirement system function becomes

M/2—1
H(Z) :Z—(M—l)/Q) Z h(k)[Z(M—l—Qk)/2 j:Z—(M—l—Qk)/2
k=0




Linear Phase Filters
Then if 2y is a zero of the FIR filter, z; ' should also be a zero.
This is a requirement for linear-phase FIR filters.

We also know that zeros should appear in complex conjugates to create

real coefficients

Then for a complex zero zq, there are three additional zeros 1/zy (for

linear phaes), 2§ and 1/z§ (for real coefficients)
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FIR Filter Design with Windowing

e Let us say we have an ideal filter that we want to reach as much as
possible, denoted by H;(w) resulting in the impulse response
1 s

T on

hq|n] Ha(w)e?™dw

—pi
e To make the filter have finite coefficients we truncate hg|n| using a

window

e This multiplication in time domain will correspond to a convolution in
frequency domain
1 T

H(w) = or | Hy;(v)W(w —v)dv

.




Linear Phase Filters

e Different windowing functions will have a different effect on the final

frequency response

e Also different windowing length will similarly change the frequency
response differently, the longer the window the less distortion, more

costly of course
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Comparison of Different Windowing Functions

TABLE 10.7 Window Functions for FIR Filter Design

Name of Time-domain sequence,
window (), 0<n=sM-1
i M—1
2 n— 5
Bartlett (triangular R *
rtlett (triangular}) _ o1
' 2 4
Blackman 0.42 — 0.5 cos — " 1 0.08 cos — "
M o M —
. , 2mn
Hamming 0.54 — .46 cos -
1 2mn
" Hanni — 1
anning 7 ( cos P 1)

Kaiser

Table 10.1 Window functions for FIR filter design




Comparison of Different Windowing Functions
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Figure 10.2.3 Shapes of several windowing functions
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Comparison of Different Windowing Functions
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Figure 10.2.4-5 Frequency responses for different windowing functions
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Comparison of Different Windowing Functions
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(M = 61). Normalized frequency

Figure 10.2.8-9 Frequency responses for different windowing functions
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FIR Filter Design by Frequency Sampling \

In this method, we specify desired filter response at samples of Hy(w)
and then solve for hg[n]

Let us sample frequency at wy = 2wk/M
Then the samples will be

M—1
Hy(k) =) hqln]e 72/
n=0
The goal is to obtain hg[n]. This can be done by multiplying both sides
with e727%/M and summing over M samples (pretty much like
calculating inverse DFT)
M—1
haln] = — > H(k)e/>™n/M
k=0

Sometimes sampling can be done at the middle of two DFT samples

instead of directly the DFT samples. /




