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Outline

• Optimum FIR filters

• Comparison of FIR filter design methods

• IIR filter design based on continuous filters

– Approximation of derivatives

– Impulse variance

– Bilinear transformation
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Optimum FIR Filters

• The goal is to design the filter such that it is optimum in a certain
desired property

• As an example we can choose the filter that results in “the minimum of
the maximum error”

• We create cost function (error) by weighting the difference betweend the
desired filter response and the FIR filter we create

• Mathematically error E(w) is

E(w) = W (w)[Hd(w)−H(w)]
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Optimum FIR Filters

• Then optimum filter coefficients can be found by

αopt = arg min
αk

[max |E(w)|]

• This optimization problem can be solved with alternation theorem given
that our FIR filter can be written as

H(w) = Q(w)
L∑
k=0

βk cos(wk)

where βk is linearly related to filter coefficients αks, and Q(w) is one of
1, cos(w/2), sin(w), sin(w/2) depending on the filter being
symmetric/antisymmetric, and having even/odd number of coefficients
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Optimum FIR Filters - Example of P (w) and Q(w)

• Assume we have a symmetric filter with even number of coefficients
h[n] = h[M − 1− n]

• Then DFT can be written as

H(w) = 2
M/2−1∑
n=0

h[n] cos[w(
M − 1

2
− n)]

• To simplify define b[k] = 2h[M/2− k] and obtain

H(w) =
M/2∑
k=1

b[k] cos(wk − w/2)
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Optimum FIR Filters - Example of P (w) and Q(w)

• Finally, using trigonometric idendities

H(w) = cos(w/2)
M/2−1∑
k=0

αk cos(wk)

• For this example Q(w) = cos(w/2) which can be blended into W (w) to
leave us with the error function

E(w) = W̃ (w)[H̃d(w)− P (w)]
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Optimum FIR Filters - Alternation Theorem

• The min-max problem is guaranteed to have a solution if there exists
enough number of frequencies where we have extermums,

• This is possible when the error function oscillates between minimum and
maximum errors allowed

• Then our optimization problem can be posed as a linear problem

W̃ (wn)[H̃d(wn)− P (wn)] = (−1)nδ

where δ is our maximum allowed error

• Rearranging terms

P (wn) +
(−1)nδ
W̃ (wn)

= Hd(wn)

• This is a linear system of equations with respect to filter coefficients αk
which are inside P (w) for known wn
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Optimum FIR Filters - Alternation Theorem

• However, we do not know wns at the begining so we

– initialize by guessing wns

– solve the system, find coefficients and P (w)

– find wns by using this P (w)

– repeat until convergence
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Comparison of FIR Filter Design Methods

• Window design intitutiave but not good control over critical frequencies

• Frequency sampling solve this problem by giving us control over critical
frequencies

• However, frequency sampling do not have control over what happens in
between the samples, that is the ripples

• Optimum FIR filter design with alternation theorem allows us to both
control critical frequencies and ripples
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IIR Filter Design Introduction

• Huge filter design methods to create continuous filters with Laplace
transform

Ha(s) =
B(s)
A(s)

which represents a filter that is characterized by constant coefficient
differential equations

N∑
k=0

αk
dky(t)
dtk

=
M∑
k=0

βk
dkx(t)
dtk

• The Laplace transforms B(s) and A(s) are based on αks and βks as
B(s) =

∑M
k=0 βks

k and A(s) =
∑M
k=0 αks

k

• We would like to use this body of methods to create digital filters

• All we need is a way to transfer continuous filters to digital filters

• There are multiple ways to do this “disceretization” or sampling
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IIR Filter Design by Impulse Invariance

• Here we simply obtain the digital filter by uniformly sampling the
continuous filter

h[n] = ha(nT )

• Using sampling theorem, the frequency response of the digital filter is
the repeated version of the analog filter

H(f) = Fs

∞∑
k=∞

Ha[(f − k)Fs]

• What is the mapping between s and z which we can use to substitute in
Ha(s) to obtain H(z)

• FT : s = jω = jw/T , DFT z = ejw, then we have mapping z = esT only
for FT not general z and s

• Left hand plane → inside unit circle
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IIR Filter Design by Impulse Invariance

• There is an elegant relation between poles in continuous and discrete
domains with impulse variance

• Consider

Ha(s) =
N∑
k=1

ck
s− pk

with time domain representation ha(t) =
∑N
k=1 cke

pkt

• Sampling this we obtain digital filter as

h[n] =
N∑
k=1

cke
pknT
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IIR Filter Design by Impulse Invariance

• Taking the z transform

H(z) =
N∑
k=1

ck
1− epkT z−1

and this has poles epkT

• Not a simple relation for zeros, remember z = esT is not a direct
mapping that can be used to relate analog and continuous filters



'

&

$

%

IIR Filter Design by Approximation of Derivatives

• Instead of directly sampling the time domain filter, we approximate the
differential equations by using digital approximations to derivatives

y′(t) =
y(nT )− y(nT − T )

T
=
y[n]− y[n− 1]

T

• Taking the laplace and z-transform of both sides

s =
1− z−1

T

• This can be generalized to

sk =
(

1− z−1

T

)k
• Then mapping s = 1−z−1

T can be used to create a digital filter H(z) from
an analog filter Ha(s)

• Stability preserved (left hand plane corresponds to a region inside unit
circlt)
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IIR Filter Design by Bilinear Transformation
(Approximation of Integrals)

• Consider the system

H(s) =
b

s+ a

• This corresponds to the system

dy(t)
dt

+ ay(t) = bx(t)

• Using an integral to obtain y(t) we have

y(t) =
∫ t

t0

y′(τ)dτ + y(t0)

• For a single sampling interval we have

y[nT ] =
T

2
[y′(nT ) + y′(nT − T )] + y[nT − T ]

• We know what y′[nT ] is from the given differential equation

y′[nT ] = −ay[nT ] + bx[nT ]
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IIR Filter Design by Bilinear Transformation
(Approximation of Integrals)

• Substituting we have(
1 +

aT

2

)
y[n]−

(
1− aT

2

)
y[n− 1] =

bT

2
[x[n]− x[n− 1]

• Taking the z − transform we obtain

H(z) =
b

2
T

(
1−z−1

1+z−1

)
+ a

• Then, the mapping for bilinear transformation is

s =
2
T

(
1− z−1

1 + z−1

)


