Outline

- Multirate Signal Processing Introduction
- Decimation by an integer
- Interpolation by an integer

Multirate Signal Processing Introduction

- A digital signal sampled from an analog signal, or as part of a digital signal processing system needs to be resampled sometimes as part of a processing method, and sometimes directly for producing output
- This resampling can be done directly in the digital domain, or by conversion to analog world first and then resampling back to digital domain
- Although multirate signal processing can be performed purely in digital domain, it is easier to understand when the underlying continuous signal is considered

Multirate Signal Processing Introduction

- Digital to analog conversion is possible by the perfect interpolation formula

$$
x_{a}(t)=\sum_{n=-\infty}^{\infty} x(n T) g(t-n T)
$$

- Perfect reconstruction is possible if sampling rate is higher than Nyquist rate (remember not required)
- Once this continuous signal is obtained, resampling can easily be performed as

$$
x_{r}[m]=x_{a}\left(m T_{r}\right)=\sum_{n=-\infty}^{\infty} x[n] g\left(m T_{r}-n T\right)
$$

where subscript "r" denotes resampling

- This resulting resampling formula is a purely digital operation performed in discrete world

Multirate Signal Processing Introduction

- Let us rewrite the sampling rate conversion formula

$$
x_{r}[m]=\sum_{n=-\infty}^{\infty} x[n] g\left(T\left(\frac{m T_{r}}{T}-n\right)\right)
$$

- Separating the $\frac{m T_{r}}{T}$ into integer k_{m} and fractional Δ_{m} parts

$$
x_{r}[m]=\sum_{n=-\infty}^{\infty} x[n] g\left(\left(k_{m}+\Delta_{m}-n\right) T\right)
$$

- Changing the summation index $k=k_{m}-n$

$$
x_{r}[m]=\sum_{k=-\infty}^{\infty} g\left(k T+\Delta_{m} T\right) x\left[k_{m}-k\right]
$$

- This can be seen as a convolution, input is $x[n]$ output is $x_{r}[n]$, the system is $g_{m}[n]=g\left(n T+\Delta_{m} t\right)$
- Watch! this is a linear system, but time-varying, g depends on m (in addition to n)

Multirate Signal Processing Introduction

- We have

$$
x_{r}[m]=\sum_{k=-\infty}^{\infty} g\left(k T+\Delta_{m} T\right) x\left[k_{m}-k\right]
$$

Figure 11.1.1 Illustration of timing relations for sampling rate conversion.

Multirate Signal Processing Introduction

- The system is

Figure 11.1.2 Discrete-time linear time-varying system for sampling rate conversion.

Decimation by an Integer Factor "D"

- If we directly downsample the signal (pretty much like sampling the discrete signal), we will have aliasing
- To avoid this aliasing we need to do a prefiltering with

$$
H_{D}(w)=\left\{\begin{array}{ll}
1 & |w|<\pi / D \\
0 & \text { otherwise }
\end{array}\right\}
$$

- In this way the signal that is inputted to the downsampler is bandlimited to π / D and downsampling by D does not cause aliasing

Figure 11.2.1 Decimation by a factor D.

Decimation by an Integer Factor "D"

- The output of this decimator is

$$
x_{d}[m]=v[m D]=\sum_{k=0}^{\infty} h[k] x[m D-k]
$$

- This is again a time-varying sytem in general when considered to be a relation between $x_{r}[n]$ and $x[n]$
- This is the relation between $x[m]$ and $x_{d}[m]$ in time domain. How about the relation between the two in the z-domain?
- We have

$$
\begin{aligned}
& X_{d}(z)=\sum_{m=-\infty}^{\infty} x_{d}[m] z^{-m} \\
& X_{d}(z)=\sum_{m=-\infty}^{\infty} \tilde{v}[m D] z^{-m}
\end{aligned}
$$

where \tilde{v} is a signal that is a repetetion of $v[m]$ every D sample and zero otherwise

Decimation by an Integer Factor "D"

- By making a change of variable $m^{\prime}=m D$

$$
X_{d}(z)=\sum_{m^{\prime}=-\infty}^{\infty} \tilde{v}\left[m^{\prime}\right] z^{-m^{\prime} / D}
$$

- This repetetition (forming of \tilde{v} can be seen as v multiplying by a train of impulses

$$
X_{d}(z)=\sum_{m=-\infty}^{\infty} v[m]\left[\frac{1}{D} \sum_{k=0}^{D-1} e^{j 2 \pi m k / D}\right] z^{-m^{\prime} / D}
$$

which is

$$
X_{d}(z)=\frac{1}{D} \sum_{k=0}^{D-1} \sum_{m=-\infty}^{\infty} v[m] e^{j 2 \pi m k / D} z^{-m^{\prime} / D}
$$

Decimation by an Integer Factor "D"

- This can be seen as a z-transform of v as

$$
X_{d}(z)=\frac{1}{D} \sum_{k=0}^{D-1} V\left(e^{-j 2 \pi k / D} z^{1 / D}\right)
$$

or

$$
X_{d}(z)=\frac{1}{D} \sum_{k=0}^{D-1} X\left(e^{-j 2 \pi k / D} z^{1 / D}\right) H_{D}\left(e^{-j 2 \pi k / D} z^{1 / D}\right)
$$

Decimation by an Integer Factor "D"

- This z-transform can be converted to FT relation by evaluating on the unit circle

$$
X_{d}(w)=\frac{1}{D} \sum_{k=0}^{D-1} X\left(\frac{w-2 \pi k}{D}\right) H_{D}\left(\frac{w-2 \pi k}{D}\right)
$$

- If H_{D} is chosen such that there is no aliasing

$$
X_{d}(w)=\frac{1}{D} X\left(\frac{w}{D}\right)
$$

Decimation by an Integer Factor "D"

Figure 11.2.3 Spectra of signals in the decimation of $x(n)$ by a factor D.

Interpolation by an Integer Factor "I"

- Now, we perform a series of similar derivations to see the relation between an original signal and its interpolated version in time and frequency domains
- Let us choose our interpolator to be the one that preserves the spectral shape of the signal
- An intermediate signal $v[n]$ that represents zero filled version of our original signal

$$
v[m]=\left\{\begin{array}{ll}
x[m / l] & m=0, l, 2 l, \ldots \\
0 & \text { otherwise }
\end{array}\right\}
$$

Interpolation by an Integer Factor "I"

- Then the z-transform can be written as

$$
V(z)=\sum_{m=i n f t y}^{\infty} v[m] z^{-m}
$$

which is

$$
\sum_{m=i n f t y}^{\infty} x[m] z^{-m I}=X\left(z^{I}\right)
$$

- In the frequency domain

$$
V(w)=X(w I)
$$

Interpolation by an Integer Factor "I"

- To preserve the shape of x and get rid of the spillover terms that comes from $w I$, we use a lowpass filter

$$
H_{I}(w)=\left\{\begin{array}{ll}
C & 0 \leq|w| \leq \pi / I \\
0 & \text { otherwise }
\end{array}\right\}
$$

- In the time domain we have

$$
x_{I}[m]=\sum_{k=-\infty}^{\infty} h[m-k] v[k]
$$

- Considering that v is zero in between every I sample

$$
x_{I}[m]=\sum_{k=-\infty}^{\infty} h[m-k I] x[k]
$$

Interpolation by an Integer Factor "I"

Figure 11.3.1 Spectra of $x(n)$ and $v(n)$ where $V\left(\omega_{y}\right)=X\left(\omega_{y} l\right)$.

