Outline

Conversion of sampling rate with a non-integer
Interchanging orders of filtering and decimation and interpolation
Polyphase implementation of systems

Efficient implementation for decimation and interpolation

-

.

Conversion of sampling rate with a non-integer

\

e Conversion of sampling rate with a non-integer is possible by performing

interpolation first and then decimation

x(n) Upsampler Filter

Rate F,

Interpolator

Rate = IF,

| Downsampler : yim)
- vD LA
Decimator

Figure 11.4.1 Method for sampling rate conversion by a factor 7/D.

e The two filters in between can be combined to form a

upsample-filter-downsample structure for resampling

-~

Conversion of sampling rate with a non-integer
e Mathematically we have

wll] = Y hll — KJv[k]

k=—o00

which can be written as

wll] = Y h[l - kI]x[k]
k=—o0
since v|l] is simply x[l] with zeros placed in between samples of x|l]
e The final output can be written as

vl =wmD] = Y h[mD — kI]a[k]

k=—o0

-

/ Conversion of sampling rate with a non-integer \

e Similar to decimation and interpolation, we want to see resampling as a

linear system

e To be able to write the relation between x|l] and x,.[l] as a linear system

we make a change of variable
k = floorlmD/I] — n

resulting in

x.|n| = Z himD — floormD/I|I + nl|x|floorjmD/I] — n]

n=—oo

e Note that mD — floor[mD/I|I = (mD); where ; denotes modulo [

e With these we obtain

z.[n] =) h[(mD)r + nl]z[floor[mD/I] — n]

- o /

Conversion of sampling rate with a non-integer

e This relationship in the frequency domain is

L < < mi
X, (w) = DX(w/D) 0 <|w| <min(w,7D/I)
0 otherwise

e This is obtained simply by cascading the interpolation and decimation

operations

Interchanging Orders in Resampling

We said that sampling rate conversion can be performed by interpolation

followed by decimation

In general, this cannot be interchanged because these operations are

tim-variant
However, we can derive a rule that allows for interchanging

We will derive rules for both decimation and interpolation

4 N

Interchanging the orders of filtering and decimation

e For downsampling (without filtering) we have

D—-1

1 7
Xp(z) = - § jX(zl/DWD)
1=0

e Then if this downsampled signal is passed through a system with H(z)

1 D—-1

V(z) = 5H(z)) X(z'/PWp)

e If the signal is passed through a filter first (call that H'(z) and then
downsampled we would have

D—-1
1 . .
Y (z) = - > H'(ZYPWHX(2VPW)
1=0

e For these two to be equivalent H'(z) = H(2P)

Interchanging the orders of filtering and decimation

> |D ——| HE o

x(n) vy (m) y(m)
(a)

> H) —| |D o

x(n) va(m) y(m)
(b)

Figure 11.5.3 Two equivalent downsampling systems (first noble identity).

4 N

Interchanging the orders of filtering and interpolation
e Similar property can be derived for interpolation

e Assume a signal is passed through a filter first and then upsampled

which is equivalent to upsampling first and then passing through a filter
H(z!)

- /

H(Z)

y(m)

> H(z) >
x(n) vi(n)
(a)
> 11 >
x(n) vy(m)
(b)
Figure 11.5.4

-
y(m)

Two equivalent upsampling systems (second noble identity).

-

Polyphase implementation for linear systems

e Any system can be implemented by reshaping the filter coefficients as

M-—-1 o0
H(z) = Z z" Z h[nM + iz~ "M
i=0 n=—00
which can be written as
M—1
H(z)= > z'P(")
i=0

with
Pi(z) = Z hinM + i]z™"

nN=——=oo

Polyphase implementation for linear systems

x(n)

‘L > Po(2?)

y(n)

— P(23) —

—> P&

Figure 11.5.1 Block diagram of polyphase filter structure for M = 3.

Efficient Implementation for Decimation

Consider a simple decimator

> H() > |D >
x(n) v(n) y(m) = v(mD)

Figure 11.5.8 Decimation system.

We do not need every sample of the filter output, since it is decimated
That is where a polyphase structure can help us

Let us use a polyphase implementation for filtering

/

.

Efficient Implementation for Decimation

> Py > |3 -
) * y(m)
Z_I
> P > |3 -
Y
Z—I
- PZ(Z3) SR l:),

e This can be further simplified by the identities that we derived

|3

\

Efficient Implementation for Decimation

_)...

Py(z) —>

y(m)

savings!

.

>

|3

_)..

Py(z)

e All of a sudden we are doing filtering in the downsampled world, a huge

/

-

.

Efficient Implementation for Interpolation

e Similarly for an interpolator

x(n)

>

> 11

Figure 11.5.11

e We can use polyphase structure

v(m)

H(z)

Interpolation system.

y(m)

Efficient Implementation for Interpolation

> 13— P
x(n) y(m)

-

— 13 — P&

3
|

—— 13— P T

e This can be further simplified by the identities that we derived

.

4 N

Efficient Implementation for Interpolation

> Py(z) > T 3 >
x(n) y(m)

[P > 13 T

e All of a sudden we are doing filtering in the not upsampled world, a huge
savings! Again..

. /

