
'

&

$

%

Outline

• Conversion of sampling rate with a non-integer

• Interchanging orders of filtering and decimation and interpolation

• Polyphase implementation of systems

• Efficient implementation for decimation and interpolation

'

&

$

%

Conversion of sampling rate with a non-integer

• Conversion of sampling rate with a non-integer is possible by performing
interpolation first and then decimation

• The two filters in between can be combined to form a
upsample-filter-downsample structure for resampling

'

&

$

%

Conversion of sampling rate with a non-integer

• Mathematically we have

w[l] =
∞∑

k=−∞

h[l − k]v[k]

which can be written as

w[l] =
∞∑

k=−∞

h[l − kI]x[k]

since v[l] is simply x[l] with zeros placed in between samples of x[l]

• The final output can be written as

xr[l] = w[mD] =
∞∑

k=−∞

h[mD − kI]x[k]

'

&

$

%

Conversion of sampling rate with a non-integer

• Similar to decimation and interpolation, we want to see resampling as a
linear system

• To be able to write the relation between x[l] and xr[l] as a linear system
we make a change of variable

k = floor[mD/I]− n

resulting in

xr[n] =
∞∑

n=−∞
h[mD − floor[mD/I]I + nI]x[floor[mD/I]− n]

• Note that mD − floor[mD/I]I = (mD)I where I denotes modulo I

• With these we obtain

xr[n] =
∞∑

n=−∞
h[(mD)I + nI]x[floor[mD/I]− n]

'

&

$

%

Conversion of sampling rate with a non-integer

• This relationship in the frequency domain is

Xr(w) =

 I
D X(w/D) 0 ≤ |w| ≤ min(π, πD/I)

0 otherwise

• This is obtained simply by cascading the interpolation and decimation
operations

'

&

$

%

Interchanging Orders in Resampling

• We said that sampling rate conversion can be performed by interpolation
followed by decimation

• In general, this cannot be interchanged because these operations are
tim-variant

• However, we can derive a rule that allows for interchanging

• We will derive rules for both decimation and interpolation

'

&

$

%

Interchanging the orders of filtering and decimation

• For downsampling (without filtering) we have

XD(z) =
1
D

D−1∑
i=0

X(z1/DW i
D)

• Then if this downsampled signal is passed through a system with H(z)

Y (z) =
1
D

H(z)
D−1∑
i=0

X(z1/DW i
D)

• If the signal is passed through a filter first (call that H ′(z) and then
downsampled we would have

Y (z) =
1
D

D−1∑
i=0

H ′(z1/DW i
D)X(z1/DW i

D)

• For these two to be equivalent H ′(z) = H(zD)

'

&

$

%

Interchanging the orders of filtering and decimation

'

&

$

%

Interchanging the orders of filtering and interpolation

• Similar property can be derived for interpolation

• Assume a signal is passed through a filter first and then upsampled

Y (z) = H(zI)X(zI)

which is equivalent to upsampling first and then passing through a filter
H(zI)

'

&

$

%

'

&

$

%

Polyphase implementation for linear systems

• Any system can be implemented by reshaping the filter coefficients as

H(z) =
M−1∑
i=0

z−i
∞∑

n=−∞
h[nM + i]z−nM

which can be written as

H(z) =
M−1∑
i=0

z−iPi(zM)

with

Pi(z) =
∞∑

n=−∞
h[nM + i]z−n

'

&

$

%

Polyphase implementation for linear systems

'

&

$

%

Efficient Implementation for Decimation

• Consider a simple decimator

• We do not need every sample of the filter output, since it is decimated

• That is where a polyphase structure can help us

• Let us use a polyphase implementation for filtering

'

&

$

%

Efficient Implementation for Decimation

• This can be further simplified by the identities that we derived

'

&

$

%

Efficient Implementation for Decimation

• All of a sudden we are doing filtering in the downsampled world, a huge
savings!

'

&

$

%

Efficient Implementation for Interpolation

• Similarly for an interpolator

• We can use polyphase structure

'

&

$

%

Efficient Implementation for Interpolation

• This can be further simplified by the identities that we derived

'

&

$

%

Efficient Implementation for Interpolation

• All of a sudden we are doing filtering in the not upsampled world, a huge
savings! Again..

