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Digital filterbanks introduction

• Filterbanks are used to separate the signal into its subbands in the
frequency domain

• In this way signal processing can be performed for these bands
individually

• There are two main parts: (i) analysis: breaks the signal into its
subbands, (ii) synthesis: reconstructs the signal back from its subbands

• A filter bank is called uniform if the filters creating the subbands are
identical (only shifted in frequency)
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Filterbanks: general structure
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Filterbanks: filters creating subbands

• The filters for a uniform filterbank can be written as:

hk[n] = h0[n]ej2πkn/N

since shifting in frequency domain is multiplication by an exponential in
the time domain

• In the z-domain
Hk(z) = H0(ze−j2πk/N )
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Uniform Filterbanks Implementation

• Since the subband signals are all narrow band these can be decimated
after being transferred into the lowpass region

xk[m] =
∑

n

h0[mD − n]x[n]e−j2πkn/N

where k denotes the subband number and D the decimation factor which
should be less than or equal to the number of subbands

• Then after processing the signals can be reconstructed back

v[n] =
1
N

N−1∑
k=0

ej2πnk/N

[∑
m

yk[m]g0[n−mI]

]
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Uniform filterbank realization
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Alternative uniform filterbank realization
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Polyphase implementation for uniform filterbanks

• For the analysis part, originally we have

xk[m] =
∑

n

h0[mD − n]x[n]e−j2πkn/N

• Using polyphase implementation

xk[m] =
N−1∑
n=0

[∑
l

pn[l]xn[m− l]

]
e−j2πnk/N

where pk[n] = h0[nN − k] and xk[n] = x[nN + k]
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Polyphase implementation of uniform filterbanks:
analysis



'

&

$

%

Polyphase implementation for uniform filterbanks:
synthesis
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Two channel quadrature mirror filterbank

• This is an example of digital filterbanks

• We have

Xa0(w) =
1
2

[
X
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2

)
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Xa1(w) =
1
2
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Two channel QMF Reconstruction

• The reconstructed signal is (when there is no processing in between)

X̂(w) = Xa0(2w)G0(w) + Xa1(2w)G1(w)

resulting in

X̂(w) = 1/2[H0(w)G0(w) + H1(w)G1(w)]X(w)

+ 1/2[H0(w − π)G0(w) + H1(w − π)G1(w)]X(w − π)

• First part is the signal we want, second part is the aliasing term we do
not want..
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Two channel QMF Perfect Reconstruction Conditions

• We will have perfect reconstruction when aliasing term is zero:

[H0(w − π)G0(w) + H1(w − π)G1(w)] = 0

H0(−z)G0(z) + H1(−z)G1(z) = 0

• And the other term is simply a delay

1/2[H0(z)G0(z) + H1(z)G1(z)] = z−k
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Two channel QMF Perfect Reconstruction Conditions

• If we assume that H1 is a mirror of H0 (as the name implies)

H0(z) = H(z),H1(z) = H(−z)

• To have no aliasing

G0(z) = H(z), G1(z) = −H(−z)

• To make the first term exactly equal to our signal (only delays allowed)

1/2[H0(z)G0(z) + H1(z)G1(z)] = z−k

which becomes
H2(z)−H2(−z) = 2z−k


